SAPHE – Smart and Aware Pervasive Healthcare Environment: Experiences from the Trial

Robert Blake
Philips Research Cambridge
June 04, 2009
Healthcare trends and drivers

- **Aging population** - by 2025, 20% of all Europeans will be older than 65

- **500,000** people in UK currently live in *care homes*, 40% of these could be supported at *home*

- 90% of older people want to stay in their *own homes*

- 5% of hospital patients, many with a long term condition, account for 49% of all acute bed days

Source: Office for National Statistics

Ageing Population

- Under 16's
- Over 65's

Gross Expenditure Per Head of Population 2003-04

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Expenditure (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>births</td>
<td>3,000</td>
</tr>
<tr>
<td>0-4</td>
<td>1,500</td>
</tr>
<tr>
<td>5-15</td>
<td>500</td>
</tr>
<tr>
<td>16-44</td>
<td>75</td>
</tr>
<tr>
<td>44-64</td>
<td>100</td>
</tr>
<tr>
<td>65-75</td>
<td>150</td>
</tr>
<tr>
<td>75-84</td>
<td>200</td>
</tr>
<tr>
<td>85+</td>
<td>4,500</td>
</tr>
</tbody>
</table>

Source: UK Department of Health: Departmental Report 2006
Provide a **pervasive health and social care solution** that is optimised for the **aging population** and patients with **long-term conditions**.

- **Unobtrusive low-power wireless sensor** networks for **long term** vital sign and **home monitoring**
- Early detection of deterioration through **context-aware** sensing and data fusion for **trend analysis**
- Addresses the needs of all **stakeholders**
User Insights for Stakeholders

• Patients
 – Elderly people living at home
 – One or more chronic conditions

• Formal Carers
 – Community Matron (CM)
 • Skilled nurse
 • Case management skills

• Informal Carers
 – Friend
 – Relative
 – Neighbour

• Clinician

• Call Centre, Installation Engineers
SAPHE End-to-End System
What do we Sense?

- In and around the home
 - PIR: room occupancy
 - Door sensors
 - Fridge usage
 - Ambient temperature
 - Weight
 - Blood pressure
 - Sleep quality & bed exits

- Body worn
 - Activity levels
 - SPO2
 - Pulse rate
 - ECG
SAPHE Wireless Technologies

- No “one-size fits all” wireless technology
- Standardized solutions
 - Wi-Fi: high bandwidth, mains, 100m
 - Bluetooth: large battery, 10m, 8 nodes
 - ZigBee: low bandwidth, small battery, 65k nodes
- Proprietary solutions
 - Low power radio: coin-cell
 - Ultra low power radio: printed battery
Liverpool Trial

• SAPHE systems installed in 8 homes
 – 2 installations scheduled
 – Trial started in February 2009 for 6 months
 – Recruiting has been time-consuming
• Large quantity of data collected
 – 7 million sensor events!
 – Failsafe design proven
 • “Store and Forward” on sensors and hubs
• Valuable experiences from all stakeholders
Experiences – Installation Engineer

• Dedicated local contact needed
 – Ad-hoc technical support and intervention

• System installation is complex
 – Installation involves patient engagement and education
 – 4-5 hours from scratch; 2-3 hours when pre-configured

• Wireless Networks
 – Multiple wireless technologies need different setup
 – Bluetooth sensors out of range
 – Wireless allows devices to be moved at a later date

• Proactive monitoring of system integrity needed
 – Offline sensors or systems not always picked up
 – Faults reported by CMs may reduce overall acceptance
Experiences – Community Matron

- Community matrons keen to be involved
 - Difficulty in identifying patients from their caseload
- Mobile device (3G netbook) received most negative feedback
 - Network connectivity and speed
 - Weight and size
- Mobile access is of great value
 - Response to ad-hoc patient contact
 - Controlled sharing of data with patients
- Activity shown to be of value to CM
 - Behavioral changes picked up that were symptomatic of health problems
- Website co-designed with CMs
 - Need to rely on data integrity
 - Interpreted data needs evidence
Interpreted Data needs Evidence

Location confirmed by sensor events and not artefacts
Correlation of Information between Sensors
Experiences – Service User

• Overall patients have accepted the technology
 – Innovative approaches to overcome issues
• Main issues have been with e-AR sensor:
 – Size and comfort
 – Competing with hearing aids, oxygen, glasses
 – e-AR is being re-designed to be belt worn
• Charging sensors
 – Dexterity for mini-USB cables
• Scales
 – Audibility of prompts
• Blood pressure accuracy
 – Calibration of device
Service User Interface

- Engage users in their care
 - Access their readings and other relevant information
 - Encourage compliance
 - Feedback that system is working
- Users interact using television
 - Universally known
 - Well defined design guidelines
- Community matron can send messages
 - Appointment reminders
Conclusions

• SAPHE extends what is normally monitored
 – Activity has proven to be useful
 – Other new sensors still need to be understood
• Wireless sensors alone do not improve healthcare delivery
 – Need for complete system
 – Presentation of sensor data important to all stakeholders
• Accuracy of sensors vital
 – Patients understand their conditions and symptoms
 – Discrepancies between sensors causes concern
• More analysis needs to be done on the data
 – Correlate sensors readings
 – Interpret readings with CM to understand health status
Vision for the Future – A Wish List

• “Invisible” sensors
 – House is completely covered without being seen
• One wireless network
 – All sensors use the same (compatible) wireless technology
• Easy installation
 – Out of the box installation by users
 – No need for professional intervention
 – Upgrade new features as required
• Data visualisation
 – User can open access to other stakeholders
 – Access information anywhere
 – Correlated information from many sensors for accurate status