Indoor Positioning: Where are we?

12th November 2025

This event is delivered by the Cambridge Wireless Location SIG

In partnership with
The Royal Institute of Navigation

Kindly hosted by Queens' College, Cambridge

WELCOME AND INTRODUCTION

Michaela Eschbach CEO Cambridge Wireless

WHO WE ARE

Cambridge Wireless (CW) is a global not-for-profit membership organisation at the forefront of innovation in connectivity and digital technology.

Since 2000, CW has united industry leaders across connected devices, networks, software, data analytics, telecoms, satellites, and more.

We help our members...

WHATWEDO

We bring together leaders, innovators, and experts through a range of initiatives designed to foster collaboration, drive innovation, and support professional growth.

From flagship conferences and networking events to strategic innovation projects and skills development, our programmes create valuable opportunities for members.

- Special Interest Groups (SIGs)
- Events and Conferences
- Academy and Training Courses
- Executive Meetings
- Knowledge Bank
- Partnership Programmes
- Connections, Visibility and Exposure

SPECIAL INTEREST GROUPS (SIGs)

SIGs are at the heart of CW's mission to help our members to Collaborate, Learn and Shape the Future. Built by and for our membership, with content shaped and delivered by the SIG.

- Focus on specific technology and market sectors
- Keep members up to date with industry developments
- Create opportunities for influencing developments
- Explore new business opportunities
- Encourage networking

- Academic & Industry
- Artificial Intelligence
- Connected & Intelligent Places
- Connected Thinking
- Content Production & Delivery
- Future Devices & Technologies
- Health Tech
- Location
- Mobile Networks
- Non-Terrestrial Networks
- Radio Technology
- Security, Privacy, Identity & Trust
- Sustainability
- Wireless Heritage

EVENTS & CONFERENCES

Free or discounted programmes for our members.

CONFERENCES:

CW International Conference (CWIC)
CW Technology & Engineering Conference (CWTEC)
Cambridge Tech Week (CTW)

MEMBER-LED EVENTS:

Seminars, masterclasses, subject/knowledge specific

MEMBER DINNERS

Expand connections with industry leaders, innovators, and the wider tech ecosystem.

Engage in thought-provoking discussions in a historic Cambridge setting.

- Free for Founder Members
- 5 tickets per event
- 3 dinners per calendar year
- Networking drinks reception
- Dinner in a university college hall
- Post-dinner keynote address

The Location SIG

The purpose of the Location SIG is to promote and further the adoption of location as a value-added facility for a range of applications.

David Bartlett

Bob Cockshot

Ramsey Faragher The Royal Institute of Navigation

Ben Tarlow Qualcomm Technologies International

Indoor Positioning: Where are we?

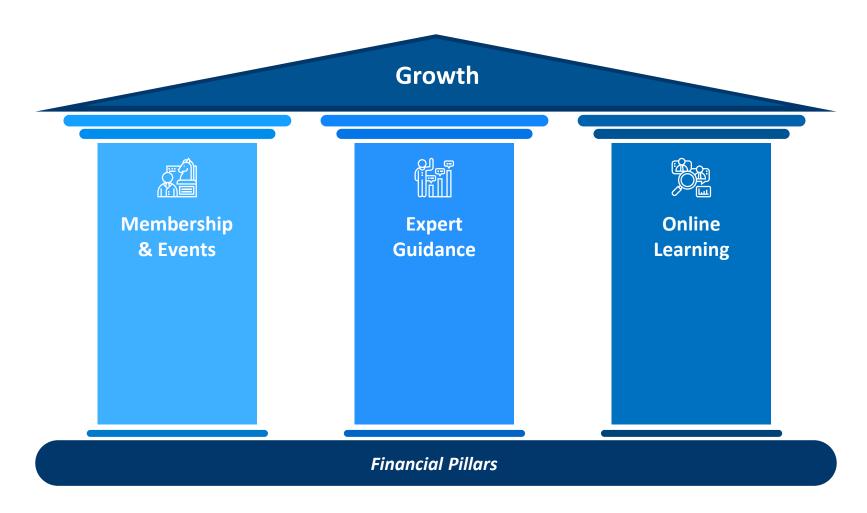
12th November 2025

This event is delivered by the Cambridge Wireless Location SIG

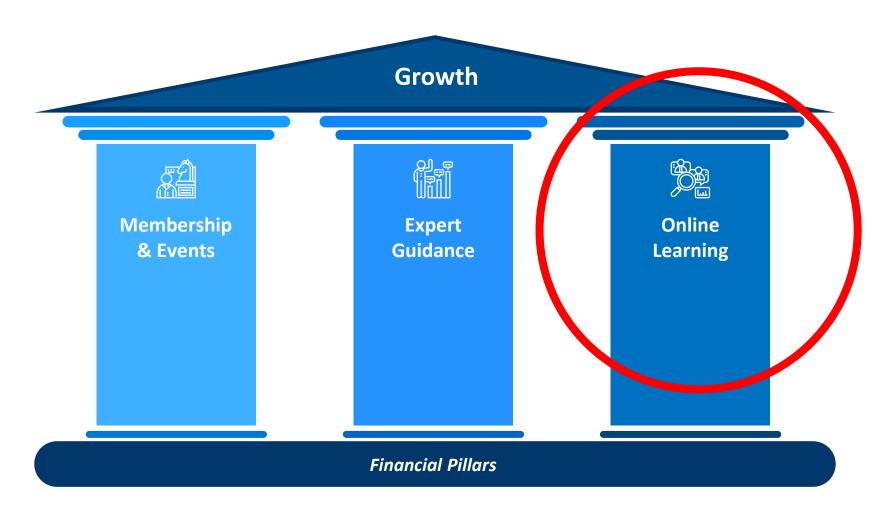
In partnership with
The Royal Institute of Navigation

Kindly hosted by Queens' College, Cambridge

Welcome & Introduction from our Event Partner The Royal Institute of Navigation


Ramsey Faragher
CEO,
The Royal Institute of
Navigation
https://rin.org.uk

Agenda


- 10:45 **Andy Ward, Ubisense** 'Wish you were here?' Q&A
- 11:10 **Paul Bearpark, 42T-** 'UWB indoor and outdoor positioning: European regulations update' Q&A
- 11:35 Bullet presentations from:
 - Fredi Nonyelu, Briteyellow www.briteyellow.com
 - Jon Stone, Waymap www.waymapnav.com
- 11:45 Mayank Batra, Qualcomm Technologies International, Ltd. Using Bluetooth Channel Sounding to improve indoor positioning'
 Q&A
- 12:10 Chris Cobb National Physical Laboratory 'Time, the Invisible Utility'
- 12:30 Lunch & networking in the Old Hall

RIN strategy 2025-2030

RIN strategy 2025-2030

Explore expert-led courses, gain new skills, and stay ahead in the world of positioning, navigation, and timing.

RIN Homepage

Welcome to the RIN **Learning Centre**

PNT (POSITIONING, NAVIGATION AND TIMING)

Content coming soon.

MORE

QUANTUM TECHNOLOGIES

Content coming soon.

MORE

SCIENCE COMMUNICATION

Content coming soon.

MORE

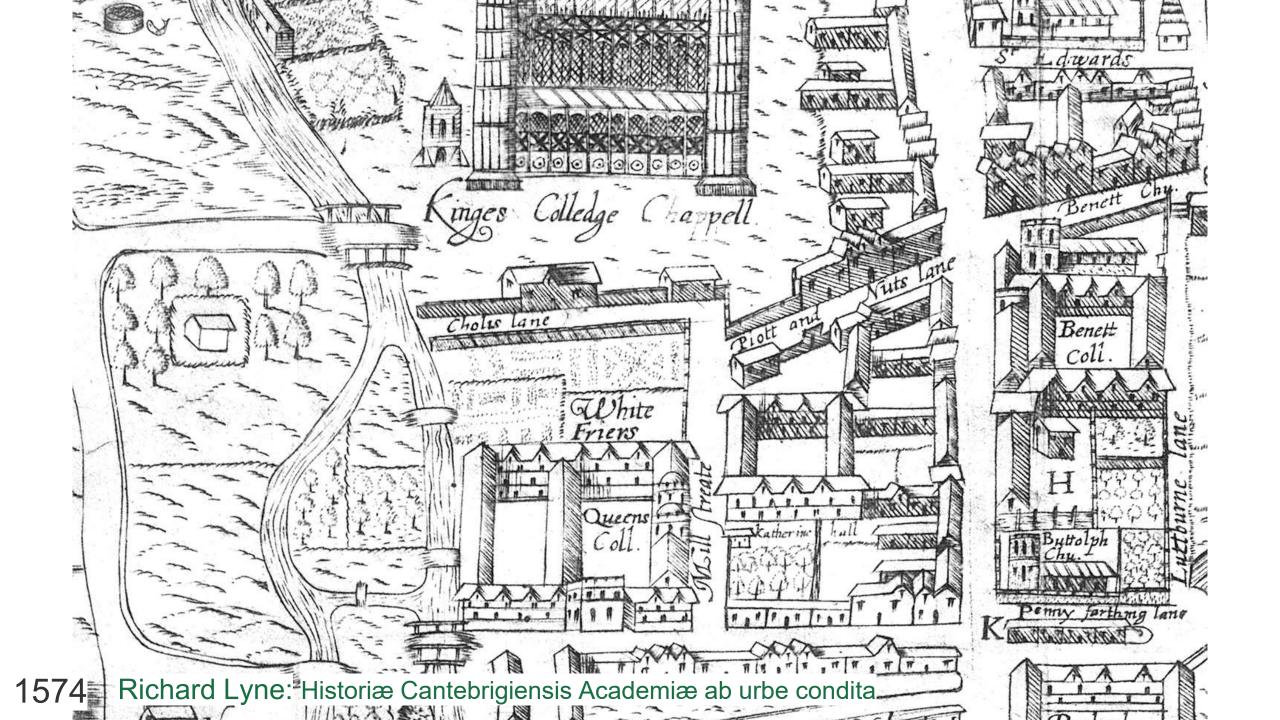
SPACE

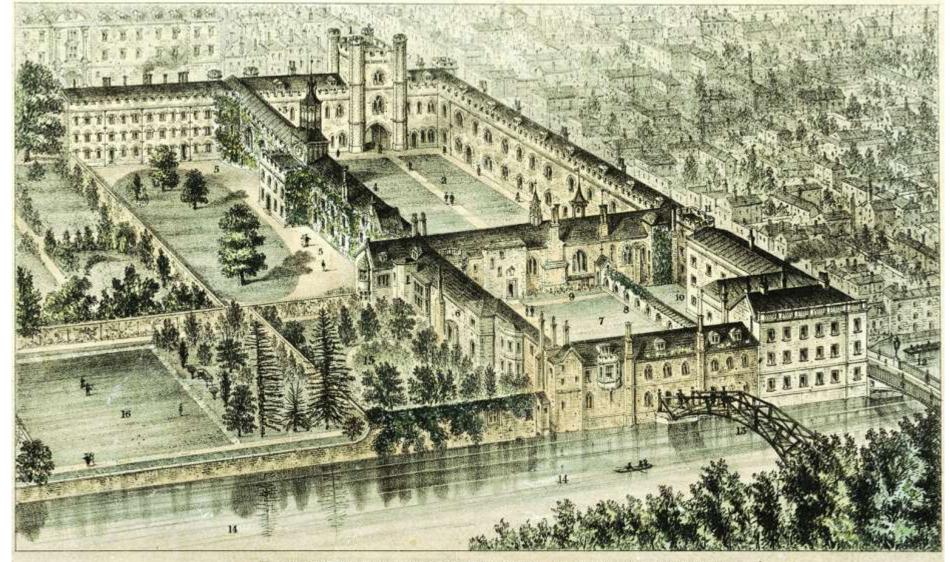
Content coming soon.

MORE

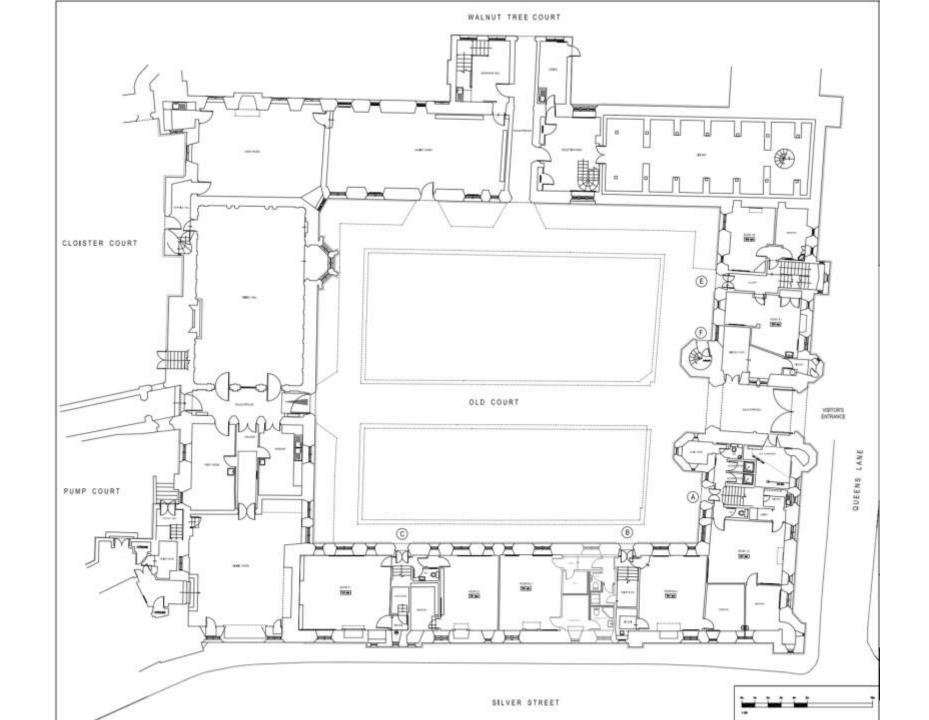
AVIATION

MARITIME




STANDARDS AND

WAYFINDING



DRAWN ENGRAVED AND PUBLISHED BY H. HVDE 34 RICHARD STREET ISLINGTON LONDON AUGUST 12th 1856

A BIRD'S EYE VIEW OF QUEENS' COLLEGE, CAMBRIDGE.

Copyright

- I. Entrance Tower
- 2 First Court
- 3 The Chapel
- 4 The Library
- 5 Walmit Tree Court
- 6 The President's Lodge
- 7 Second Court
- 8 Part of the Closters
- 9 The Hall
- 10 Fellows Buildings Plump Court. II. Erasmus' Tower
- 12.Small Bridge
- 13 Bridge leading to the Fellows Garden and Grove
- 14 River Cam.
- 15 The President's Garden
- 16 The Fellows Bowling Green

'Wish you were here?'

Andy Ward,
CTO,
Ubisense
https://ubisense.com

Ubisense and location-awareness

Founded in 2002 to commercialise in-building location-aware solutions:

Ubisense uses location data to discover relationships between **products**, **processes** and **people**, giving you unrivalled visibility and control of your operations

- Heritage from Cambridge University Computer Lab and AT&T Labs Cambridge
- HQ'd in Cambridge, with US & German field offices, and partner support in Japan
- Provides full-stack solutions for industrial / commercial / military customers
- Major markets are automotive, aerospace, transit and defence

Ubisense Ltd | 2025 25

Ubisense location technology components

- Dimension4 ultrawideband (UWB) location system
 - Mobile, battery-powered tags (up to 25y lifetime @ 1Hz)
 - Fixed sensor infrastructure (measuring signal AoA+TDoA)
 - 10-30cm 3D accuracy in indoor environments
 - Very high system capacity (200 updates/s per tag, 100k+ tags)
 - Optional GNSS/RTK-GNSS for indoor+outdoor location

- SmartSpace location platform software
 - Takes data from any location or identification sensor
 - Builds sensor-agnostic real-time digital twin of site
 - Supports visibility, monitoring and control solutions
 - Makes building new location-aware applications easy

Ubisense Ltd | 2025

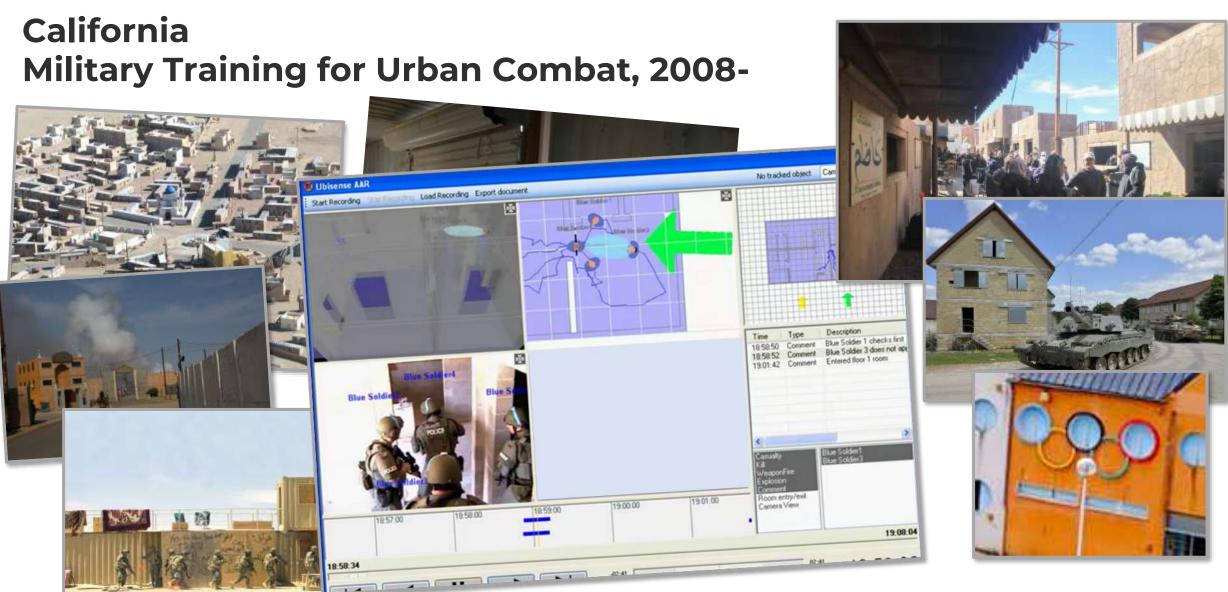
Kölliken, Switzerland

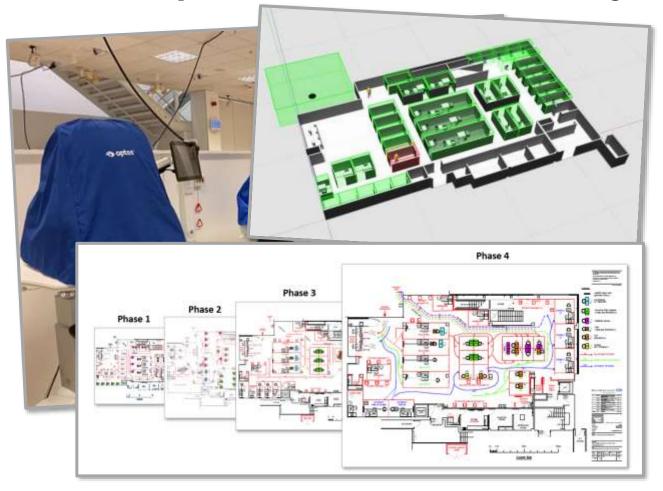
Kölliken, Switzerland Personnel Safety at Hazardous Waste Site, 2005-2018

Ubisense Ltd | 2025

Minneapolis, USA

Minneapolis Bus Depot Management, 2007-


California


35

UK Process Optimisation, Moorfields Eye Hospital (2022-)

Singapore

Singapore Activity Analysis (2011)

Hawaii

Conclusion - there's definitely a place for indoor location

- Ubisense has focused on industrial / commercial / military applications
 - Naturally more infrastructure-tolerant than consumer applications
 - These application spaces tend to have certain requirements that are well-met by UWB:
 - Operation in GNSS-denied environments
 - High accuracy/reliability
 - Long battery lifetime
 - Other use cases may well benefit from different indoor location technologies
- These use cases are delivering real value
 - Applications are sticky some have been in widespread use now for 15+ years
- The customer sites might not always be beautiful...but they are <u>always</u> interesting!

Ubisense Ltd | 2025 4

'UWB indoor and outdoor positioning: European regulations update'

Paul Bearpark,
Head of Electronics & Software,
42T

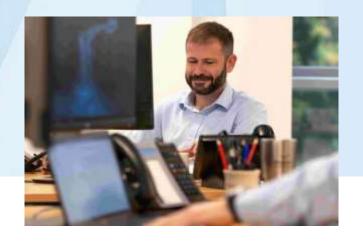
https://42t.com

421.

UWB regs and a beyond regs case study

12 Nov 2025

Paul Bearpark


T +44 (0)7824709153

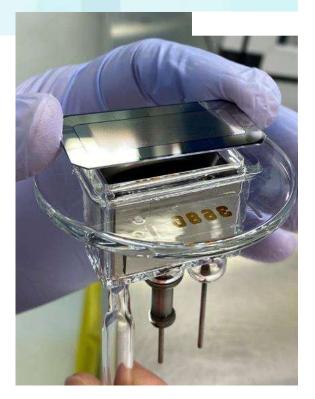
E paul.bearpark@42T.com

UWB regulations

Part 1: UWB European regulations update

Part 2: Case study – UWB outdoor location beyond current regulations

We are 42T


42T is a product development and innovation consultancy based near Cambridge, UK

We partner with our clients to solve complex technical problems and develop brilliantly successful products.

Ingenuity + collaboration are in our DNA

At heart we are innovators. Clients use us when:

Their goals are ambitious and time-sensitive

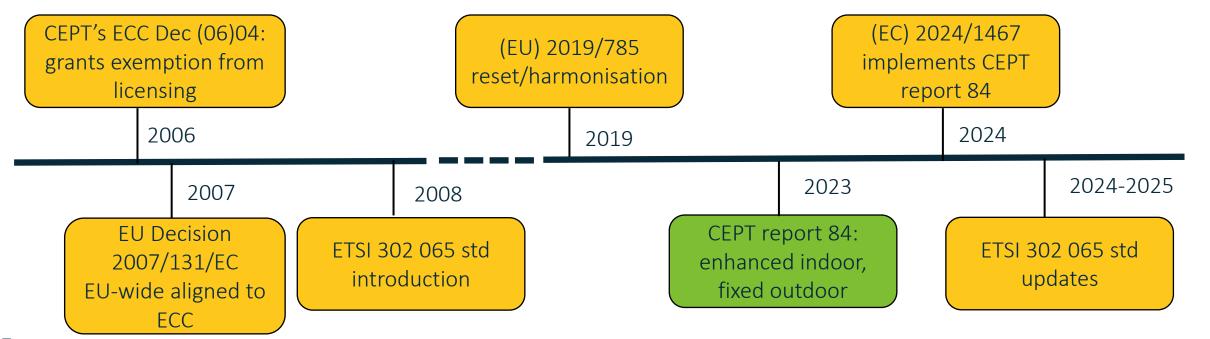
They desire a protectable and inventive solution

They need a multi-disciplinary extension to their team

They want something technically innovative that works

We help our clients in the following areas

Design & Ethnography


Innovation & Intellectual Property

Product Development

Manufacturing & Automation

Technology Advice

UWB regulatory timeline

47

What were the main changes in 2024 (6<f≤8/5GHz)?

'Enhanced' Indoor	Fixed outdoor	Vehicular (road & rail) V2I and V2V
Max mean e.i.r.p -31.3dBm/MHz Peak power 10dBm in 50MHz	Max mean e.i.r.p -41.3dBm/MHz Peak power 0dBm in 50MHz	Max mean e.i.r.p -41.3dBm/MHz Peak power 0dBm in 50MHz
	Max antenna height 10m Above 2.5m max is -46.3dBm/MHz and antennas directive and down tilted.	Antennas max height: Fixed – 10m (directive and down tilted) Vehicle – 4m
	Omnidirectional antennas for data acquisition and access control only	
Max duty cycle 5% per second	Max duty cycle 5% per second	Duty cycle max per second: Fixed – 5% Vehicle – 1%
Network/controlled operation		

48

What's not changed?

Generic (UWB)	In vehicle (road and rail)	Vehicle access
3.1 <f≤4.8ghz -41.3dBm/MHz using LDC¹ or DAA¹</f≤4.8ghz 	3.1 <f≤9ghz Combinations of LDC, DAA, TPC and e.l.² are required differently in different parts of the band</f≤9ghz 	3.1 <f≤4.2ghz -41.3dBm/MHz with trigger- before-transmit and LDC (≤0.5% in 1 hr)</f≤4.2ghz
6 <f≤8.5ghz -41.3dBm/MHz (as per LT1)</f≤8.5ghz 		6 <f≤8.5ghz -41.3dBm/MHz with trigger- before-transmit and LDC (≤0.5% in 1 hr) or TPC</f≤8.5ghz
8.5 <f≤9ghz -41.3dBm/MHz using DAA¹ (as per LT1)</f≤9ghz 		No e.l. requirement Trigger by user or by the vehicle

¹ details for LDC, TPC and DAA are in ETSI 302065

Also, some use onboard aircraft allowed 6.0<f≤6.65GHz and 6.6752<f≤8.5GHz LT1 – location tracking systems type 1

² e.l. is exterior limit which is also defined in ETSI 302065

Other not legally binding, non-harmonised recommendations from **CEPT ECC**

LT1 (as per (EC) 2024/1467)	LT2 (ECC Rec (11)09)	LAES (ECC Rec (11)10)
6 <f≤8.5ghz -41.3dBm/MHz (as per LT1)</f≤8.5ghz 	3.4-4.8GHz -41.3dBm/MHz (0dBm/50MHz max peak e.i.r.p)	3.4-4.2GHz -21.3dBm/MHz (20dBm/50MHz max peak e.i.r.p)
8.5 <f≤9ghz -41.3dBm/MHz using DAA¹ (as per LT1)</f≤9ghz 	Intended for person and object tracking at fixed locations either indoor or outdoor	Intended for Location tracking Application for Emergency and disaster Situations
	Max duty cycle 5% per second and max T _{on} = 25ms	Max duty cycle 5% per second
	Subject to registration and authorisation, co-ordination with victim receivers	
P	To some extent superseded by recent changes to outdoor albeit at a different frequency band	

Rationale for changes

Indoor RTLS – more robust signalling, greater range between devices making systems more cost effective and reliable

Outdoor RTLS – supplementing and/or lower cost than RTK systems

Pressure to maintain EU competitiveness, particularly vs US, but increases risk of interference with fixed services (FS) and fixed satellite services (FSS)

Other rationale for decision – fewer high data rate comms services appeared than anticipated. WiFi dominates. Therefore, additional scope for UWB location devices operating at higher power.

UWB is more accurate than other RF PNT technologies

Beyond the new regulations

DroneHome Objective

To develop a high accuracy, high reliability, long range, low cost autonomous navigation solution that is accurate enough to allow precise landing on both ground and elevated landing platforms, even in case of GNSS outages.

Case Study - Drone Home

ESA NAVISP2 sponsored (UKSA supported) project for which which 42T provided consultancy to Omnisense.

Ampyx Power (NL) sought an autonomous drone landing solution even under GNSS denied conditions

A faptation of Omnisense UWB local positioning system – particularly the need for extended range – the organized that the organized the organized that the organized the organized that the organized that

2 phases – DroneHome 1 in 2020-22 suspended at 85% complete when prime contractor Ampyx Power (NL) closed suddenly, and then Dronehome 2 in 2025 with Omnisense prime contractor

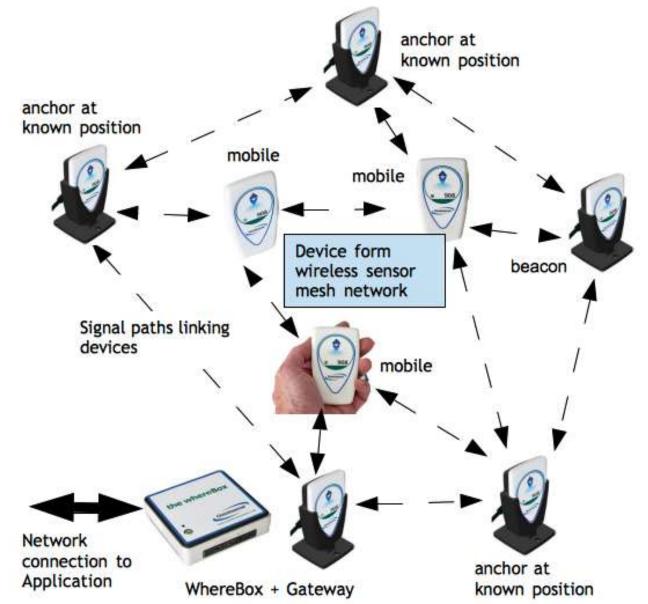
DroneHome 2 verification trials summer 2025, final review next month (Dec 2025)

Solution will benefit from changes in UWB regulation to permit use for specific applications.

DroneHome AWES System

Wind drives the aircraft at an altitude of up to 450m

Tensile force causes the tether to be reeled-out from the winch


A generator converts the tether motion into electrical power

54

Omnisense LPS and DroneHome

XXXXX-P-YY vZ © 42 Technology Ltd. 2025

DroneHome and UWB Regulations in 2022

- UWB used on a 'non-interference and non-protected basis' means that no harmful interference may be caused to any radiocommunication service
- UWB airborne transmission is not allowed
- Equipment used outdoors cannot be attached to a fixed installation, a fixed infrastructure, or a fixed outdoor antenna.
- Unlicenced limits the Max Mean Spectral Density -41.3dBm/MHz

EU Category	Licencing	EIRP dBm/MHz	Fixed Infrastructure	Example Report Separation
Generic UWB	Unlicenced	-41.3	No	n/a
Location Tracking Systems (LT2)	Individual Authorisation (per deployment)	-41.3 (Low Duty Cycle) -70.0 >4.8GHz	Allowed outdoor	To FS – case by case To FSS – 2.6Km
Location Tracking Emergency and Disaster (LAES)	Yes. Services or Agencies responsible for Public Safety	-21.3 (3.4 to 4.2GHz) -70.0 >4.8GHz	Expected mobile/portable and temporary outdoors	To FSS 20Km/12.3Km

Created a white paper outlining the findings above and the requirements for LPS in AWE to work with Regulators

55

UWB Range

Configuration	Range	LNA Gain dB	Antenna Gain dBi	EIRP Ground - dBm/MHz	F	EIRP vs Regulatory
Unmodified Tag	9.8m	0	-5	-41.3		Limits
External Antenna (Current)	40m	0	0	-39.0		Blade type antenna
AP3 Scenario 1	200m	3	3.5	-28.5*		
AP3 Scenario 2	200m	3	9	-34.0*		Directional
assumes 3dB link margin						

The DW1000 solution includes a feature called Smart Power. Smart TX power control only applies at the 6.8 Mbps data rate.

• When sending short data frames at this rate (and providing that the frame transmission rate is < 1 frame per millisecond) it is possible to increase the transmit power and still remain within regulatory power limits, which are typically specified as average power per millisecond.

• The achieved gain in transmit power depends on the Preamble Length, SFD length and Frame Length.

Optimise DW Smart power use

Goal – autonomous landing on raised platform

57

XXXXX-P-YY vZ

GCN535 with LNA and PA

UWB Internal Antenna

UWB PA/LNA switch

Low Noise Amplifier (LNA)

UWB Antenna Switch

> UWB Interna Antenna

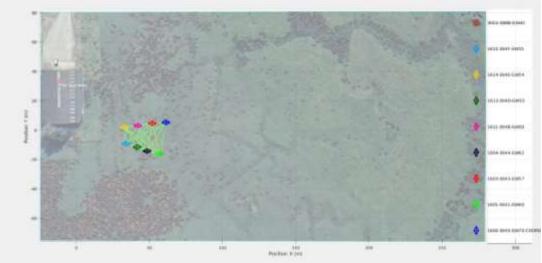
Power Amplifier (PA)

PPS nterrupt

Field Testing

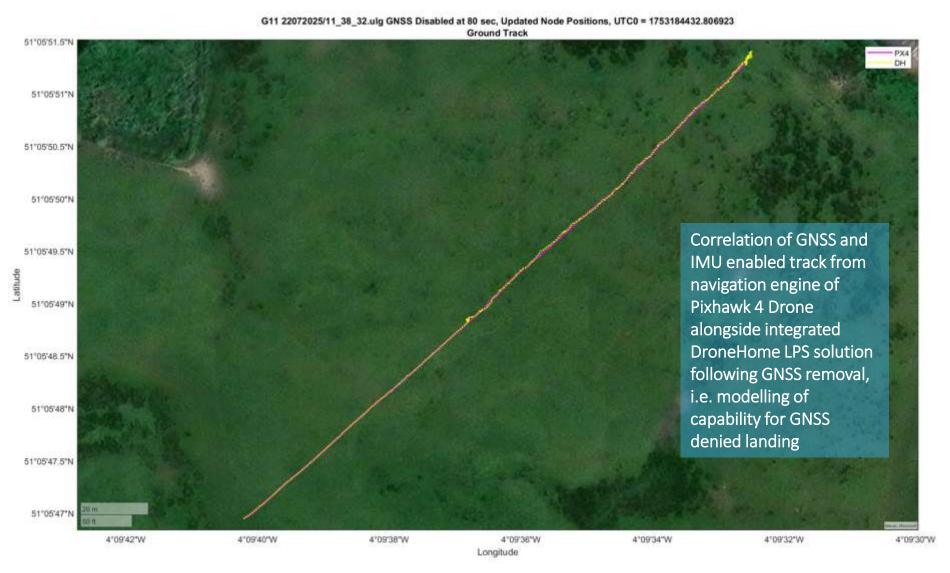
Verification Testing Wrafton, Devon July 2025

2 month licence granted by Ofcom to operate UWB at higher power at test site



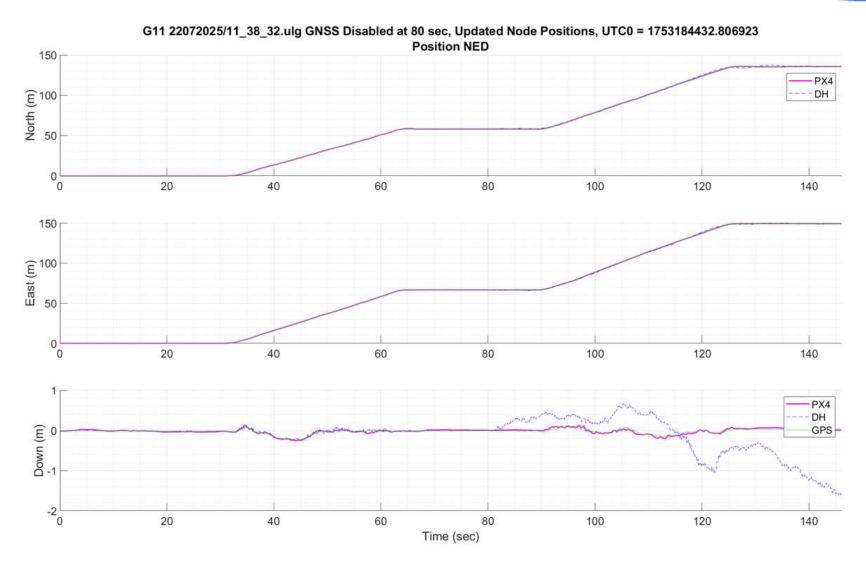
Drive and Flight Tests

Array of Fixed Beacons approached by receive only tag on Mounted Drone



60

XXXXX-P-YY vZ


Lat/Lon of replayed solution compared to PX4 navigation solution. G11-GNSS Denial.

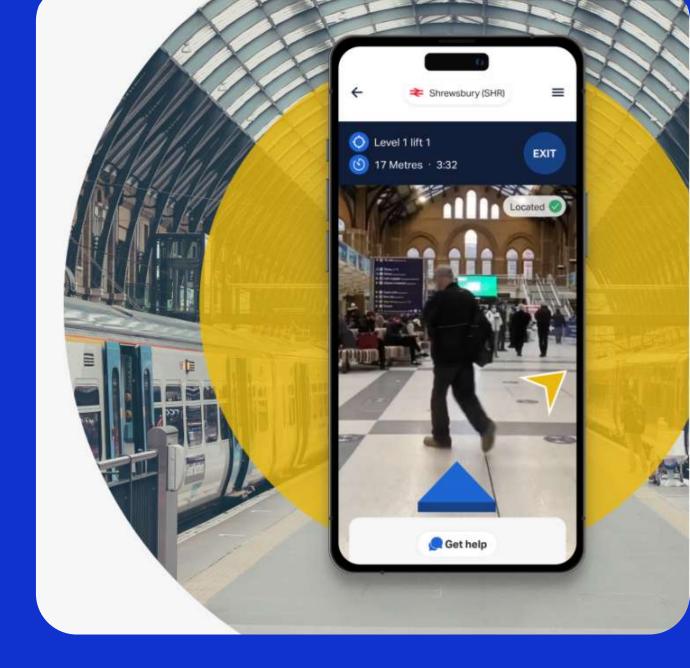
NED Positions during approach (XYZ)

Key points to take away

- Relaxation of regulations has created new opportunities for both indoor and outdoor UWB applications
- The fixed outdoor was a surprise in a way (to me) but probably reflects the fact the UWB has not become ubiquitous in the way that WiFi has
- Given the very low use in rural areas there may be a case for higher power for infrequent use and when geolocated
- The DroneHome application is good example of a use case:
 - Support for landing of drones when GNSS is compromised
 - And/or increased landing reliability working in conjunction with GNSS

63

Briteyellow



Fredi Nonyelu
Founder & CEO
Briteyellow
www.briteyellow.com

Pioneering spatial Intelligence

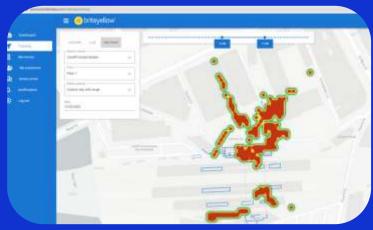
Indoor positioning and navigation for complex built environments

Agenda

Topics Covered

(1) Who are we: Briteyellow at a Glance

2 Problems we solve: For older and disabled people


Our solution: Spatial Intelligence Platform

4 Applications: Real world

Briteyellow at a glance

Managed WiFi 2003-2012 Position Tracking 2012-2019

Spatial Intelligence 2020-2025

briteyellow

Inaccessible Journeys

1 in 4 disabled people avoid travel

due to navigation barriers.

briteyellow

Unsafe Care

> 57% of UK carers suffering burnout

due to staff shortage

briteyellow

Spatial Intelligence platform

Enabling more accessible journeys and prioritised care for older and disabled people, and increased efficiency for operators.

Real World Applications

Briteway

Travel Companion App

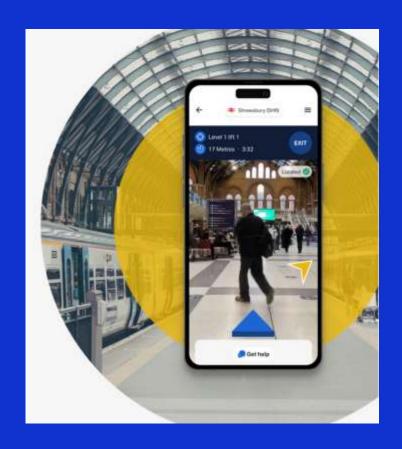
£47k/yr staff efficiency savings

Britecare

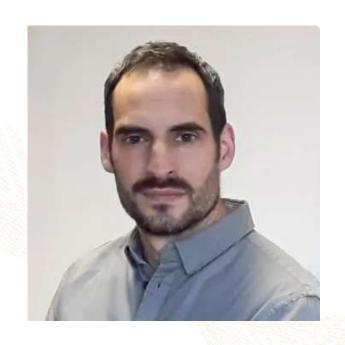
Virtual Care Assistant

28% increase in staff efficiency

Britezone


Spatial Insights Dashboard

Unlock hidden efficiencies & opportunities


Thank you!

Turning complex buildings into smart places.

For more info, visit briteyellow.com fredi.nonyelu@briteyellow.com.

Waymap

Jon Stone
Head of Location Technology,
Waymap
www.waymapnav.com

Waymap x Indoor Positioning

This is where we are....

The Only Navigation App That Works

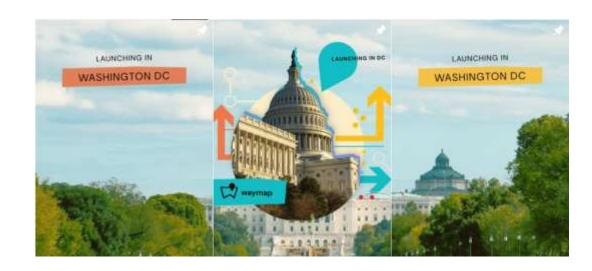
Outdoors Indoors Deep Underground

Whether navigating you directly to your underground platform, around a shopping centre or on and off your bus, this is the world's most precise navigation app.

Book a Call

Accessibility at Scale...

Our Reach



Cutting-edge navigation tech...

How Waymap Guides Every Journey

Efficient and personalized journey planning, with real-time step-by-step instructions.

Novel Location Engine

Advanced sensor fusion algorithm, that doesn't require GPS, Bluetooth, mobile data or Wifi

Visual Positioning System

Low latency camera-based positioning, locating users to centimetre-level accuracy

Contact Us

Download the app

Follow on social media

Thanks!

'Using Bluetooth Channel Sounding to improve indoor positioning'

Mayank Batra,
Principal Engineer,
Qualcomm Technologies
International, Ltd.
www.qualcomm.com

Qualcom

Using *Bluetooth*® Channel Sounding to improve Indoor Positioning

Mayank Batra,
Principal Engineer,
Bluetooth Standards Lead

Evolution of Bluetooth positioning

What is Bluetooth Channel Sounding?

Core principles

How phase-based ranging works

How round-trip time works

Security measures

Conclusions

Evolution of Bluetooth positioning

Bluetooth LE (2010): Enabled presence detection and basic item finding (Find Me Profile).

Beacons & RSSI (2013): First-generation distance estimation using signal strength (TX Power & RSSI).

Direction Finding (2019): Bluetooth SIG introduced Angle of Arrival (AoA) and Angle of Departure (AoD) for direction calculation using phase measurements and antenna arrays.

Channel Sounding (2024): Next step for accurate, secure distance measurement.

Limitations of Previous Methods

RSSI-based distance estimation not accurate enough for many applications.

No indication of direction or robust security safeguards.

Direction finding improved accuracy but still had limitations for fine-ranging.

What is Bluetooth Channel Sounding?

- A new feature in the Bluetooth Core Specification enabling secure, accurate distance measurements between Bluetooth devices.
 - Fundamentally, it enables a device to characterize the propagation path to a remote device.
 - Released as part of Bluetooth Core Specification 6.0* in August 2024. Enhancements already being developed.
- Designed to improve accuracy and security in device positioning applications.
 - Line of sight: ± 50 cm accuracy for distances up to 5 meters, ± 10% of actual distance for higher distances.
 - Multiple antennas can be used on one or both devices to counter the effects of multi-path indoors.

Use cases:

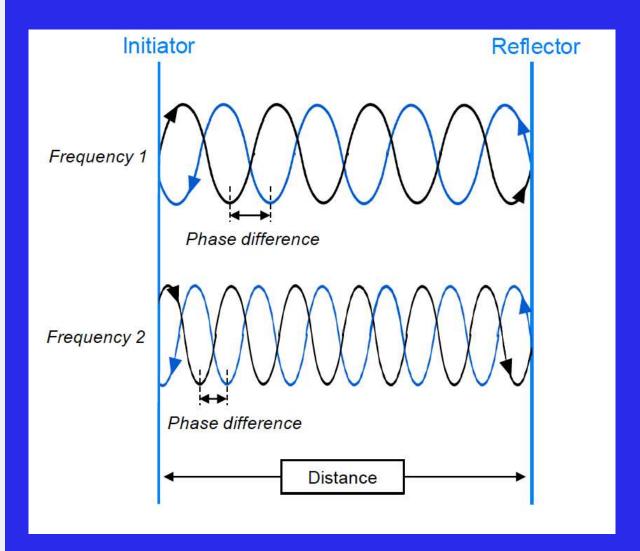
- Find My solutions: More accurate item location.
- Digital keys: Enhanced security for access control.
- · Asset tracking & navigation: Reliable, fine-grained positioning.
- Developer flexibility: Prioritize accuracy, security, or latency as needed.
 - Can enable distance measurements typically at 10 Hz (one measurement every 100 milliseconds).
- Limitation: A point-to-point connection is required between the two devices.

Core principles

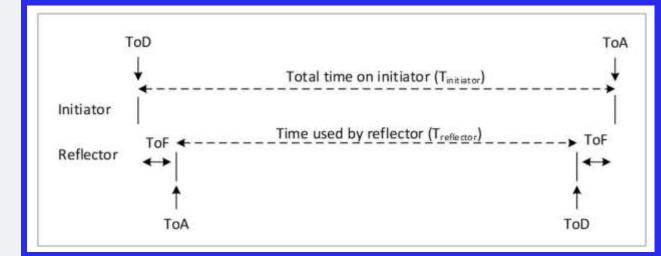
Radio wave properties: amplitude, wavelength, frequency, phase.

Two main methods:

Phase-Based Ranging (PBR): Measures phase differences across frequencies to calculate distance.


Round-Trip Time (RTT): Measures time-of-flight for signals between devices. Also provides different levels of security.

Both PBR and RTT supported; PBR is primary for accuracy, RTT adds security and resolves ambiguity.


How Phase-based Ranging works

- Frequency f1:
 - Initiator sends a tone at frequency f1.
 - Reflector performs a phase measurement.
 - Reflector sends a tone at frequency f1, calculates PCT*.
 - Initiator performs a phase measurement, calculates PCT.
- Reflector sends its PCTs to Initiator.
- Total phase shift $\Delta\phi$ is the sum of two PCTs.
 - $distance = c \times \Delta \phi / 4\pi \times f$
- To resolve phase ambiguity (wrap every 2π), tones are exchanged at multiple frequencies.
- Slope of phase vs. frequency gives a linear estimate of distance.
- Ambiguity can arise due to periodic phase values; RTT helps resolve this.

How Round-Trip Time works

- Measures time taken for a signal to travel from Initiator to Reflector and back.
- Reflector sends its ToD ToA measurements to Initiator.
- Distance = $((T_{initiator} T_{reflector})/2) \times c$.
- Requires precise timestamping and compensation for device processing delays.

Security features

RTT with Sounding or Random Sequence

Mitigate replay attacks and timing-based exploits by introducing unpredictability in the signal pattern.

Combined PBR & RTT:

• Hard to attack both simultaneously. Phase and time attacks require different techniques.

Deterministic Random Bit Generator (DRBG):

- Generates cryptographically secure random bits for randomizing bit streams, access addresses, antenna paths.
- Reduces predictability in patterns, making it harder for attackers to guess or inject malicious data.

Attack detection:

• Normalized Attack Detector Metric (NADM) to monitor anomalies in signal behavior and report likelihood of attack.

• SNR control:

Injects noise into the channel making it harder for attackers to extract useful information from signals.

• LE 2M BT=2.0 PHY (BT=time-bandwidth product in GFSK):

• Improves physical layer security by making it harder for an attacker to inject a fake signal without matching exact waveform.

Conclusions

• Previous positioning methods were less reliable:

- RSSI-based distance estimation could be affected by environmental factors, leading to variability in accuracy.
 - Also impacted by variations in TX output power (±2 dB) and variations in RSSI accuracy (±2 dB) leading to uncertainty.
- Typically confirmed presence, not precise location/direction; performance could degrade with obstacles/signal attenuation.
- Direction finding (AoA/AoD) improved accuracy but still faced challenges with fine-ranging and robust security.

Channel Sounding: A notable improvement in reliability

- Uses phase-based ranging and round-trip timing to deliver more accurate distance measurements
- Reduces (but does not entire eliminate) the impact of RSSI limitations and multipath effects.
- Built-in security features (randomization, attack detection, SNR control) to help protect against spoofing and relay attacks.

Indoor positioning revolution:

- In challenging indoor environments, Channel Sounding enables more precise, secure, and reliable location determination.
- Enables new applications for navigation, asset management, and "Find My" solutions in offices, hospitals, airports, etc.

Thank you

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

© Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks or registered trademarks of Qualcomm Incorporated.

Other products and brand names may be trademarks or registered trademarks of their respective owners.

substantially all of our products and services businesses, including our QCT semiconductor business.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated,

Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Qualcomm patenteds are licensed by Qualcomm Incorporated.

Indoor Positioning: Where are we?

This event is delivered by the Cambridge Wireless Location SIG

In partnership with
The Royal Institute of Navigation

Kindly hosted by Queens' College, Cambridge

Agenda

Niki Trigoni, Navenio & Tamzin Lent, WhereYouAt (WAY) - No longer able to join us

- 13:50 **Paul Groves, University College London (UCL)** 'Positioning Indoors and Outdoors' Q&A
- 14:15 Bullet presentations:
 - Dr Richard Hoptroff 'Lessons from the Outdoor Position, Navigation and Time community'
 - Marianne Slamich, CMO, Pointr
- 14:25 **Chris Steer, Geoptic** 'Advances in Applied Muon Positioning' Q&A
- 15: 00 Event ends

'Positioning Indoors and Outdoors'

www.ucl.ac.uk

Paul Groves,
Professor of Positioning and
Navigation,
University College London (UCL)

Positioning Indoors and Outdoors

Paul D Groves

Professor of Positioning and Navigation University College London p.groves@ucl.ac.uk

Indoor Positioning: Where are we? Cambridge, 12 November 2025

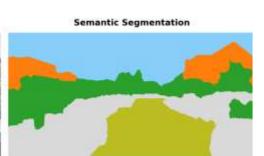
Robust Positioning and Navigation at UCL

Vision

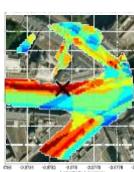
A world where a real-time low-cost position solution within 3m is available in all places at all times

Mission

- To improve the reliability of navigation and positioning technology in challenging environments
- To devise, develop and demonstrate new methods of navigation and positioning
- To optimize the integration of different navigation technologies embracing the challenges of complexity, context and ambiguity
- To educate people about navigation technology


Current and Recent Projects

- Wi-Fi Round Trip Timing Indoor
- Foot Mounted Inertial Navigation Outdoor
- Semantic Visual Feature Matching Outdoor
- Magnetic Anomaly Matching Indoor
- 3D Mapping Aided GNSS Outdoor
- Navigation Doppler Lidar for Aircraft Navigation Outdoor Collaboration with Curtin University, Australia



The Great Positioning Divide

Indoors

- Wi-Fi
- Localisation
- Sensor Hybridization
- Computer Science
- IPIN

Outdoors

- GNSS
- Navigation
- Sensor Integration
- Engineering
- ENC, ION

BUT

- Most journeys are both outdoors and indoors
- Radio signals do not stop at building boundaries (Faraday cages excepted)
- The basic principles of positioning are the same everywhere
 - Ranging
 - Angulation
 - Feature matching
 - Motion sensing

Does GNSS Work Indoors?

6-35 satellites received

4-38 satellites received

2-25 satellites received

1-15 satellites received

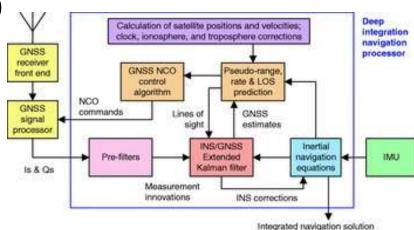
- Relatively weak 15-25 dB-Hz
- More signals and stronger signals on higher floors
- More signals and stronger signals nearer to Windows

Answer: GNSS works in many buildings

BUT: Not all, and it's generally less accurate than outdoors

Results from Mengxin Wei MSc project report, UCL, 2023

Can Indoor GNSS be Improved?


Receiver sensitivity can be boosted using inertial sensors to provide it with motion information

- Known as deeply-coupled integration, ultra-tight-coupling, synthetic aperture GNSS and supercorrelation
- Boosts sensitivity by 10 dB or more
- Originally a military technology

Now adapted to work with consumer-grade chips and

sensors - Ublox X20

 Gives better availability and accuracy indoors

Low Earth Orbit (LEO) satellites

- Much stronger signal ~20 dB
- More satellites needed
- Several proposals under development

Image: Eutelsat OneWeb

Does Wi-Fi Fingerprinting Work Outdoors?

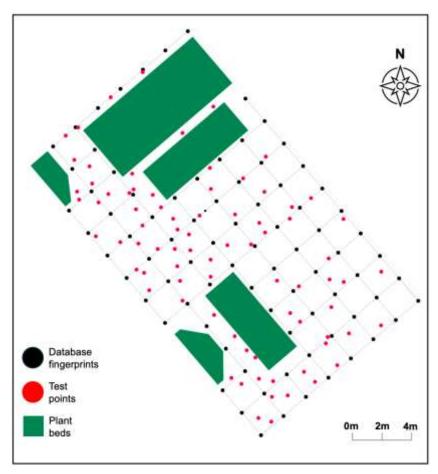
Results from Humza Hussein MSc project report, UCL, 2024

5.3 m

2.2 m

3.8 m

3.4 m



3.0 m

Answer: Yes

Is Outdoor Wi-Fi Fingerprinting Practical?

From Humza Hussein MSc project report, UCL, 2024

Answer: Of Course Not!

 You can't sample a 2x2 m grid of signal strengths in the middle of a street

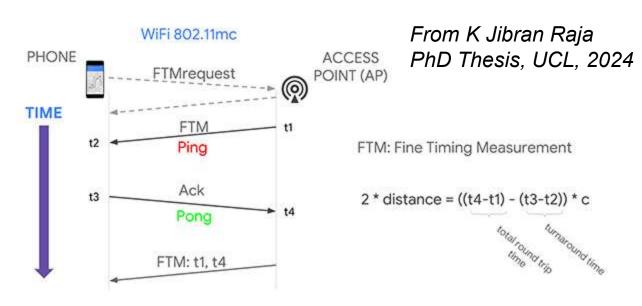
This Photo by Unknown Author is licensed under CC BY-SA

BUT Indoor fingerprinting is impractical too

- Building surveys are time consuming and expensive
- Cooperation of the building operator is needed

What About Wi-Fi Ranging?

Google's location service estimates range from received signal strength


- Less accurate than fingerprinting
- More practical customer data is used to build the access point database

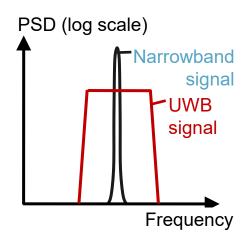
Round trip timing (RTT) gives more accurate range measurements from compatible access points

- UCL has achieved 2m accuracy (mainly indoors) K Jibran Raja PhD thesis
- Google use Wi-Fi RTT measurements outdoors

This Photo by Unknown Author is licensed under CC BY-SA-NC

What About Other Radio Signals?

This Photo by Unknown Author is licensed under CC BY


Phone Signal Positioning

- Works indoors and outdoors
- Relatively poor accuracy unless there's a clean line-ofsight to multiple base stations
- Typically used to initialize GNSS and Wi-Fi positioning

Ultrawideband

- High precision indoor positioning
- Outdoor use limited by short range of standard UWB protocols

 Range can be extended by reducing the data rate –demonstrated by Thales circa 2008

eLoran

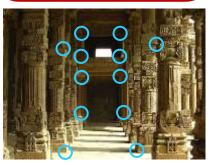
- Designed for maritime positioning
- Adopted for time synchronisation
- Can be less accurate in cities
- Not much testing indoors

Visual Features

Image-Database Matching

- Hardware and basic principles are the same for indoors and outdoors
- Different feature descriptors may suit different environments

Captured image



Patternmatching algorithm

Image database

Cross-view Image Matching

- Sometimes we need to match a forward looking image to a map or aerial photo
- Traditional feature descriptors don't translate well
- UCL is investigating sematic segmentation

Street View Query Image

Semantic Segmentation

Magnetic Anomaly Matching

Indoors – Lots of Features

- Structural Materials
- Furniture, radiators
- Electrical equipment
- Cabling

The challenge is dealing with complexity

UCL has shown

- AC and DC fields should be treated separately
- Potential benefits of sampling at different heights

(Peter Thompson PhD thesis)

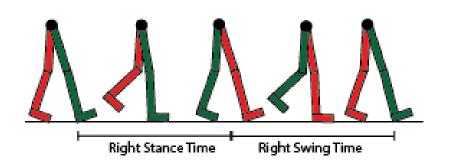
Outdoors – Features are Sparse

- Lamp posts
- Metal pillars
- Some building exteriors

Dead Reckoning (Motion Sensing)

Wheel Speed Odometry

- Distance travelled estimated from wheel rotation measurement and wheel radius
- Works exactly the same indoors and outdoors
- Little difference in error characteristics



Pedestrian Dead Reckoning

- Uses inertial sensor measurements to detect steps and estimate step length
- Sensors can be placed anywhere
- Smartphone sensors typically used
- Works exactly the same indoors and outdoors

BUT – Terrain is more complex outdoors

Inertial Navigation

- Direction obtained by integrating angular rate measurements
- Distance travelled obtained by double integrating acceleration (obtained from non-gravitational acceleration measurements & a gravity model)
- Works the same in any environment
- Accuracy depends on sensor quality
- More commonly used outdoors:
 - Size
 - Weight
 - Cost
 - Power

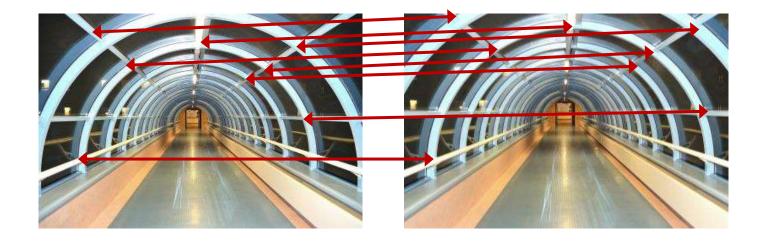
Foot-Mounted Sensors

- Zero-velocity updates each step calibrate the errors
- Accuracy ~1% of distance travelled (low-cost sensors)
- Works the same on hard terrain indoors and outdoors

BUT Outdoors, we must adapt to soft terrain

 UCL has shown that the terrain type can be detected using the IMU and machine learning

From Taylor Knuth PhD Thesis, UCL, 2025



Visual Odometry

- Features compared across successive images
- Need scale information to infer camera motion
 - Height above ground
 - Stereo camera
 - Range sensor
- Low-cost inertial sensors can aid outlier detection

Hardware and basic principles are the same for indoors and outdoors

 Harder to infer camera motion using more distant features

- Feature descriptors can be environment-dependent
- Rural & urban more different than urban & indoor

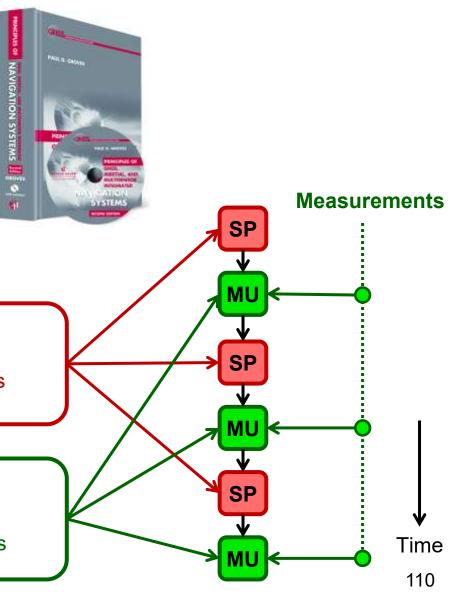
Sensor Integration

The same approach is used indoor and outdoor

- Motion sensing maintains a constant navigation solution
 - Inertial navigation, Dead reckoning, Odometry etc
- Bayesian estimation algorithms correct and calibrate this using absolute positioning measurements
 - GNSS, Wi-Fi & Other Radio, Visual Features etc

Context-adaptive integrated navigation systems

- Detect the environment
 - Indoor/ outdoor
- Detect the behavior
 - Pedestrian/ vehicle
- Adapt accordingly


See Han Gao PhD Thesis, UCL, 2018

State Propagation

Uses a dynamic model to predict the state estimates forward in time

Measurement Update

Uses measurements to update the state estimates

Conclusions

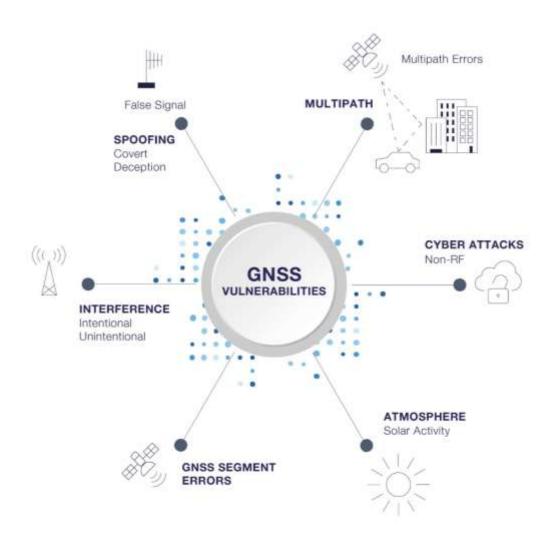
- No positioning technology works exclusively indoors or exclusively outdoors
- Some technologies are more reliable or more practical indoors
- Others are more reliable or more practical outdoors
- Many positioning technologies need adapting for indoor or outdoor operation
 - No different from adapting to land, sea or air
- We should not be treating indoor and outdoor positioning as separate disciplines

'Lessons from the Outdoor Position, Navigation and Time community'

Nancy Scott
Corporate Projects Director,
Hoptroff
www.hoptroff.com

HOPTROFF SMART TIMING

Accurate, monitored, synchronised and resilient – because without timing, nothing works

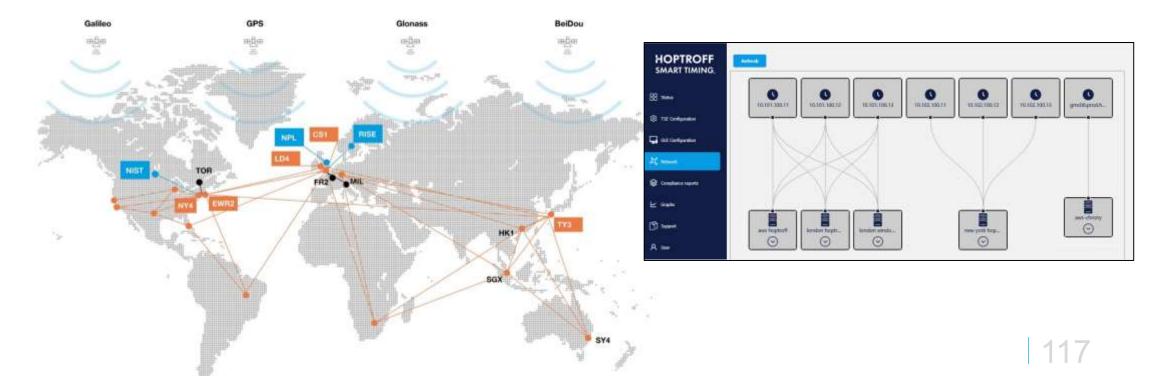


Position, Navigation and Time (PNT)

- Why do we need Time?
 - To create a true record of the sequence of events for data transfer
 - From financial transactions to emergency services
 - To make sure events happen in the right order for safety and data integrity for interconnected technologies
 - From power distribution, broadcast to telecommunications
- How Hoptroff does it ?

We rely too much on GNSS (e.g. GPS)

- When GNSS ceases to work, the Chain of Comparisons ceases to function and sequence of events can get broken
- Bad things happen
 - Financial market manipulation
 - Power substation failure
 - Telecommunications failure
 - Transportation fails


HOPTROFF SMART TIMING.

		1				
Regulation / Standard	Date	Accuracy	Sector	Intent	Geography	Traceability
IETF v4, RFC 5905 (NTP)	1985	Traceable	Engineering	System Interoperation	Global	UTC
HIPAA	1996	Traceable	Healthcare	Record of events	US	UTC
HL7	1997	1s	Healthcare	Record of events	Global	UTC
Gramm-Leach-Bliley Act (GLBA)	1999	Traceable	Finance	Security & Data Integrity	US	UTC
Sarbanes-Oxley (SOX)	2002	Traceable	Finance	Security & Data Integrity	US	UTC
IEEE 1588-2008 (PTP)	2008	Traceable	Engineering	System Interoperation	Global	UTC
FINRA CAT NMS	2012	100us	Finance	Record of events	US	UTC
IEC 61850-5 - Synchrophasors	2013	1us	Power	Measurement	Global	Relative
IEC 61850-5 - Fault Recording	2013	100us	Power	Measurement	Global	UTC
IEC 61850-5 - Transient Events	2013	1ms	Power	Measurement	Global	UTC
IEC 61850-5 - Power Quality	2013	10ms	Power	Measurement	Global	UTC
IEC 61850-5 - Slow Events	2013	100ms	Power	Measurement	Global	UTC
EENA NG112	2013	1ms	Emergency Services	Record of events	EU	UTC
JCAHO/JCI EHRPI (Q) 482.24(c)(1)	2013	Traceable	Healthcare	Record of events	Global	UTC
IOSCO FR04/13	2013	By country	Finance	Record of events	Global	UTC
MiFID II	2014	100us	Finance	Record of events	EU	UTC
21 CFR Part 11	2014	Traceable	Food & Drug	Record of events	US	UTC
NENA STA-026.5-2022	2016	100ms	Emergency Services	Record of events	US	UTC
EU Annex 11	2016	Traceable	Food & Drug	Record of events	EU	UTC
SMPTE 2110 / SMPTE 2059-2	2017	1us	Broadcast & Media	System Interoperation	Global	Relative
ITU-T G826x LTE/5G-NR FDD - Frequency Generation	2018	50 PPB	Telecoms	System Interoperation	Global	Relative
JT-NM TR1001-1	2019	100ms	Broadcast & Media	System Interoperation	US	UTC
ITU-T G827x LTE/5G-NR/eMBMS - TDD Slot Alignment	2019	10us	Telecoms	System Interoperation	Global	UTC
ITU-T G827x LTE/5G-NR TDD - Carrier Alignment	2019	1us	Telecoms	System Interoperation	Global	UTC
ITU-T G827x LTE/5G-NR TDD/eCIC- Interference Management	2019	1us	Telecoms	System Interoperation	Global	UTC
ITU-T G827x LTE/5G-NR TDD CoMP/LBS - Cell coordination	2019	1us	Telecoms	System Interoperation	Global	Relative
US Exec Order 13905	2020	Traceable	Critical Infrastructure	GNSS Resilience	US	UTC
ISO27001 / ISO27002 / ISO17799	2022	Traceable	Enterprise	Security & Data Integrity	Global	UTC
PCI-DSS 10.4	2022	Traceable	Card Payments	Record of events	Global	UTC
NIS2 OPS1.1.5.A4	2022	Traceable	Critical Infrastructure	Cybersecurity	EU	UTC
DORA	2023	Traceable	Finance	Security & Data Integrity	EU	UTC
UK Risk Register	2023	Traceable	Critical Infrastructure	GNSS Resilience	UK	UTC
CFTC 17 CFR 23.202	2024	1m	Finance	Record of events	US	UTC
RIS-6702-DST Appendix F	2024	Not specified	Rail	Signalling & control	UK	UTC
NENA STA-026.5-2022	2025	100ms	Emergency Services	Record of events	US	UTC
EU notice 9188/1/25	2025		Critical Infrastructure	GNSS Resilience	EU	UTC

Hoptroff's Time Sync Solution

Hoptroff provides global time dissemination from multiple timescales across the globe, with terrestrial connectivity to National Measurement Institutes including **NPLTime** and NIST. Long distance time delivery is achieved through a mix of close relations with telecoms companies and smart NTP and PTP client software.

Many enterprise customers worldwide, from finance to defense. 99% of applications are indoor.

HOPTROFF SMART TIMING

Keeping the world on time

31 16600日日春日

2001000111111

Nancy Scott

Corporate Projects Director

Nancy.scott@hoptroff.com

hoptroff.com

With acknowledgement to https://www.nlai.blue

Commercial in Confidence, Property of Hoptroff London Limited

Pointr

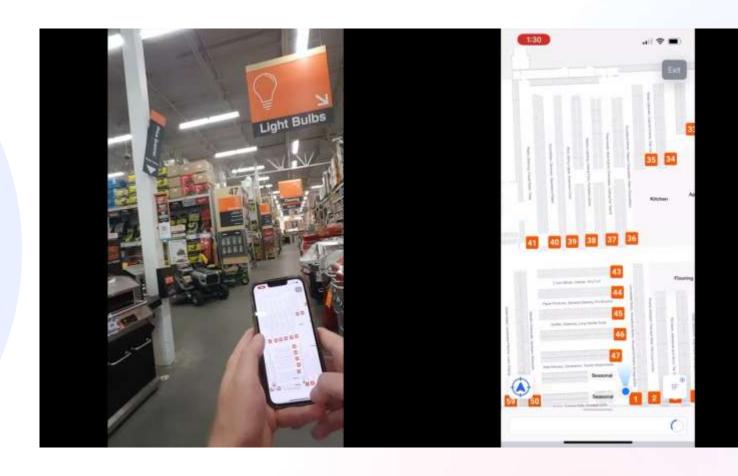
Marianne Slamich
CMO
Pointr
www.pointr.tech

Indoor Locationfor Smart Buildings

Problem

Indoor Location is crucial for Smart Buildings but there is no platform that **performs** and **scales**

Accurate and reliable Blue Dot powered by Pointr


Instant Location with Bluetooth

✓ Instant Blue Dot

✓ 1-3 m Accuracy

Accurate Orientation (no compass)

Ultra Scalable (no fingerprinting)

Meet Pointr Maps™ Platform

Pointr is the inventor behind MapScale®, the first and only AI Mapping solution for scale.

Pointr Maps™ is an API-first platform offering:

Meet Pointr

Top choice of Fortune 100, inventors of Al-based mapping

We're live in 5,000+ buildings and have digitized over 2 billion square feet.

We envision a world in which every building is smart — helping your teams find people, rooms, and resources unlocking productivity and workplace efficiency.

Honeywell

Thank you!

Marianne Slamich
CMO
+447426321320
marianne.slamich@pointr.tech

'Advances in Applied Muon Positioning'

Chris Steer

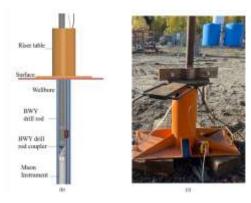
Managing Director

Geoptic

https://geoptic.co.uk

Advances in Applied Muon Positioning

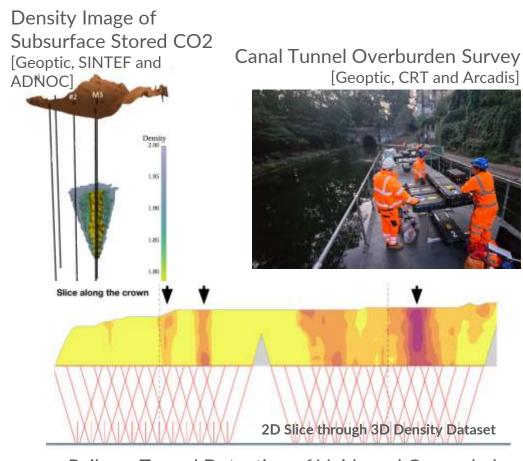
Indoor Positioning: Where are we?


Structures and Subsurface Muon Monitoring

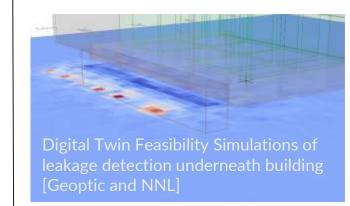
Instrument Form-Factors

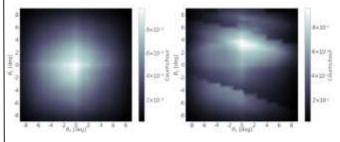
Borehole Detectors

60mm by 220cm | 15kg (Air) | 5W | <2km water


Compact High Resolution Detectors

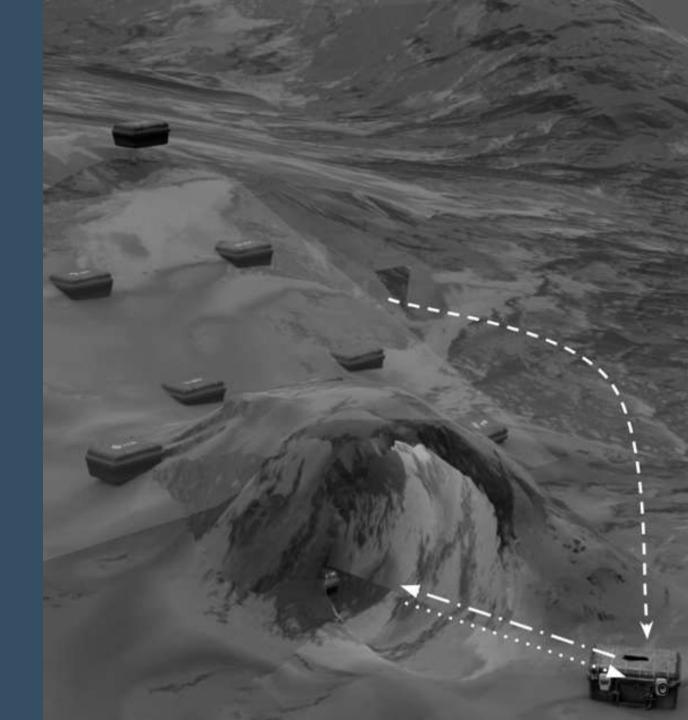
39cm by 30cm by 17cm | 7kg | 5W


... plus others and bespoke

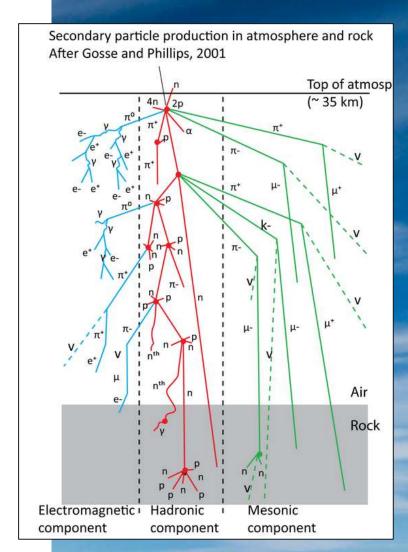

Example Applications

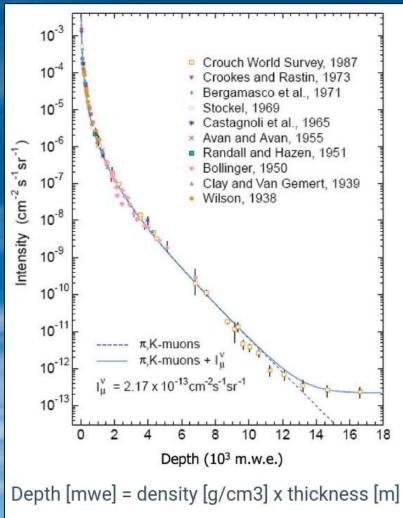
Railway Tunnel Detection of Voids and Concealed Subsurface Shafts [Geoptic, Network Rail and RSK]

Advanced Calculations for New Applications and Structures



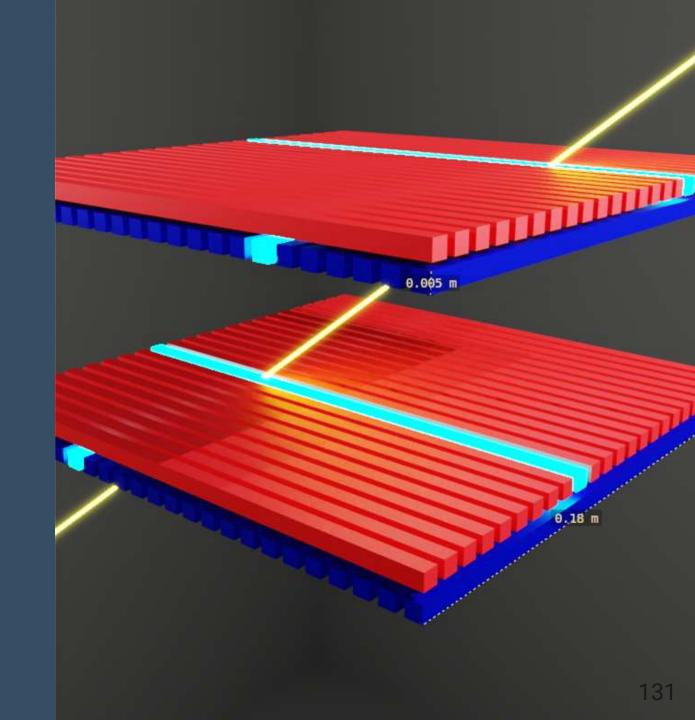
Feasibility Calculations of Muon Fault Detection [Geoptic, IAEA, NAGRA and BGE] 128


Introduction to Muon Positioning



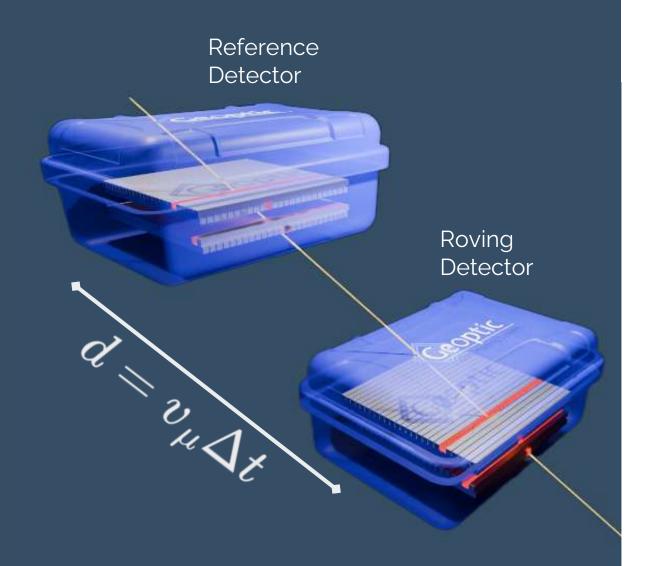
What are Cosmic Ray Muons?

- High-energy particles are incident on the upper atmosphere
- The secondary cosmic ray flux at sea level is dominated by muons
 - 10,000 muons/minute/m²
 - Relativistic and highenergy
- Highly penetrating

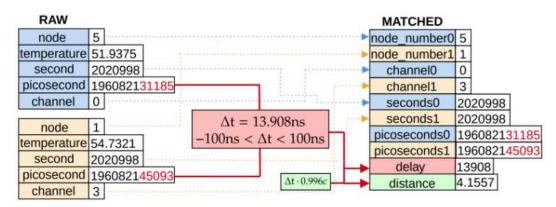


Muon Detection

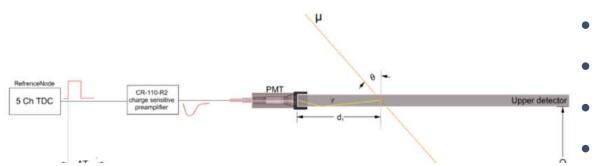
- Segmented Bar Arrangement
- Material produces flash of photons
- Sensitive Photodetector
- Current pulse (typ. 10ns width)


Inferred Muon Event Information

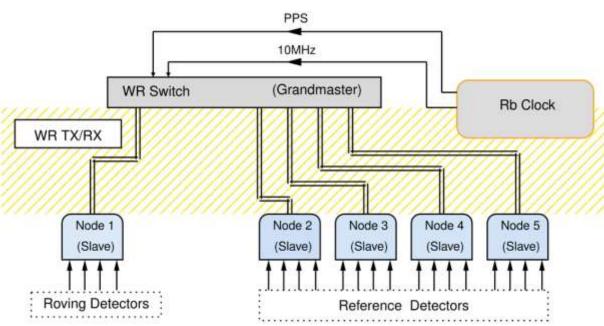
- Hit time
- Hit location on detector
- Track direction



Timing-based Muon Positioning



- Single muon is coincident on one detector with a known position (reference) and one without (roving)
- Timing difference of hits can be converted to distance
- Standard multilateration with multiple reference detectors and a single roving detector
- Unsegmented detectors


Timing-based Positioning Implementation

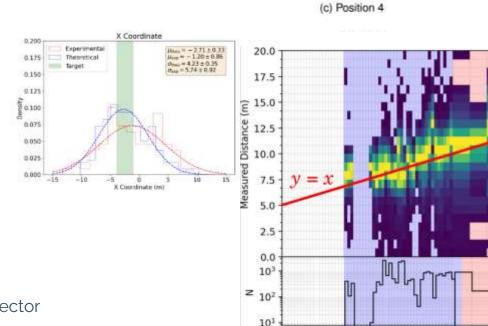
- Reference detector array shown at Pysählmi Mine, Finland
- Each node comprises four 15cm by 80cm detectors
- Readout is via time-to-digital converter
- Each node clock disciplined by White Rabbit timing distribution

Dense Urban, Underwater and Underground ('22-'24)

Results Summary

Z Coordinate

Z. Coordinate (m)


14

Theoretical

0.1

Ground Truth Distance (m)

- Range up to 30m slant distance, 20m vertical
- Broad, good agreement with particle transport simulations and studies
- Position Error: In the region of 2m (typ.)
- Time-to-position: ~ 20 minutes
- Spreads correspond to instrumental timing issues:
- 7ns from PMT jitter
- <3ns from photon transport</p>

Y Coordinate

Jain = 2.70 ± 0.67

X Coordinate

 $\mu_{\rm time} = -2.79 \pm 0.25$ $\mu_{\rm sep} = -3.16 \pm 0.75$

Open = 315 ± 0.25 then = 4.90 ± 0.85 0.175

0.150

0.125

£ 0.100

0.075

0.050

0.025

Theoretical

Experimental

Theoretical

Target

0.175

0.125

E 0.100

0.075

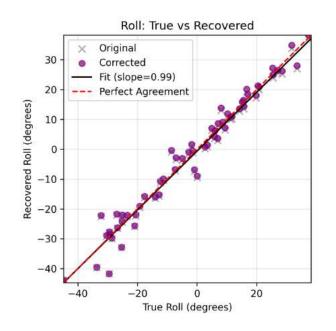
0.050

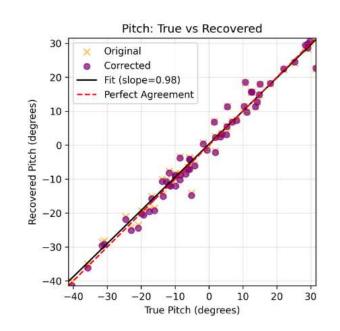
0.900

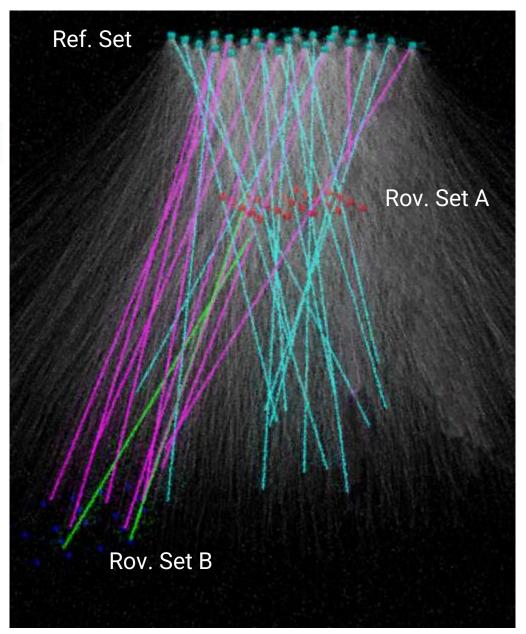
- Roving clock drift limits total deployed operational time
- Competes against minimum four-fold reference-roving detector
- Depth/Distance limited by instrument accidental coincidences

0.2

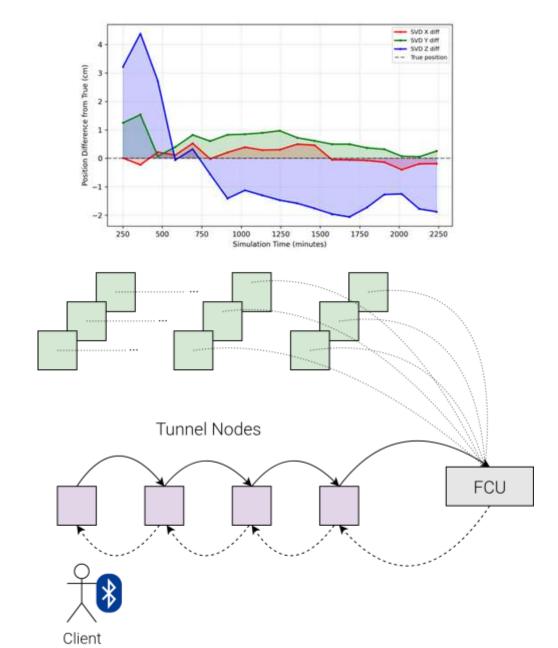
Trajectory-based Muon Positioning


- Re-designed detector node
- Improved track angular resolution
- Lower accidentals likelihood
- Reference and roving detectors measure direction of co-incident event
- Event vectors from reference detectors to roving detector system
- **Position** estimated as region-ofclosest approach of vector pairs
- Min. two events for position estimate



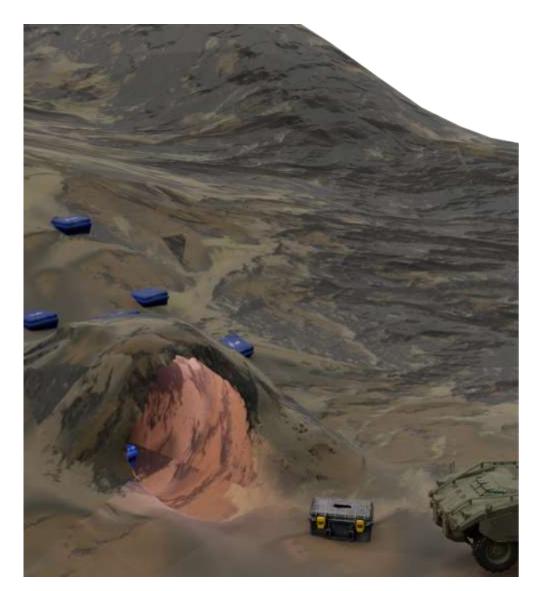

Algorithm Advances

- Development focused on algorithm development in three areas
- Robust **position estimation** based on event paired vectors
- Detector system orientation estimation from muon N Information alone $\mathbf{q}* = \arg\min_{q} \sum_{t_i} \min_{t_i} \left\| \mathbf{q} - \left(\mathbf{p}_i + t_i \hat{\mathbf{d}}_i \right) \right\|$ Position inference transfer from one roving detector to
- another



Interim Results

- Initial trajectory based simulated results suggest improved performance and fit
- Time-to-estimate: 5 mins 2 hours at
 10-20m
 - Scales with detector surface area
- Position Error: <5cm (known orientation) <50cm (without)


- Easier to deploy
 - Lighter, lower power consumption
 - Short setup time to muon tracking
 - Position and orientation inference

Conclusions and Near-term Developments

- Geoptic has implemented a muon positioning based on time and working to develop a trajectory based system
- Building test network of 10 detector tracking units for subsurface imaging and waypoint position network
- Technical implementation of:
 - Implementation of LORA (from WiFi)
 - Field-compute unit build to coordinate messaging and
 - Last hop BLE to user
 - Weight reduction considerations
- Initial tunnel network testing after October 2026

Thank you

Contact:

Dr Chris Steer

E-mail: chris.steer@geoptic.co.uk

Telephone: +44 1256 541616

Office: Geoptic, Beechcroft Barn, Pickaxe Lane, South Warnborough, Hampshire RG29 1SD, United Kingdom.

Acknowledgements

Funding from Office for Naval Research Global and US Army DevCom

Earlier muon timing-based positioning project in partnership with Woods Hole Institute, Muon Solutions, Virtual Muography Institute, and NEC.

Tanaka, Hiroyuki KM. *Scientific Reports* 13.1 (2023): 15272. Tanaka, Hiroyuki KM. *Scientific Reports* 10.1 (2020): 18896.

Disclaimer

Copyright © 2025 Geoptic

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the intended recipient, it's employees and representatives. It is solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

The information in this report is provided to the best of our knowledge. Geoptic accepts no liability for any loss, damages or costs (whether direct, indirect or consequential) incurred by any person and howsoever caused arising from or connected with any error or omission in this document or from any person acting, omitting to act or refraining from acting upon, or otherwise using, the information contained in this document or its references.

Reference to any specific commercial product, process or service by trade name, trademark, manufacturer or otherwise, does not constitute or imply its endorsement, recommendation or favouring by Geoptic.

Indoor Positioning: Where are we?

A PDF of the presentation & a feedback form will be shared with you via email.

Thank you for joining us


This event was delivered by the Cambridge Wireless Location SIG

In partnership with
The Royal Institute of Navigation

Kindly hosted by Queens' College, Cambridge

