Training neural networks using Tensorflow

Lars Mennen

Cambridge Wireless, 23rd November 2017
Training neural networks **using Tensorflow**

- Two parts today:
 - General part about neural networks and how to train them
 - Training neural networks using Tensorflow
- Keep your laptops ready!
- Follow along with Python notebooks:

 https://github.com/larsmennen/intro_to_tensorflow

(most code adopted from Tensorflow tutorials - tensorflow.org)
Part I: Training neural networks
Supervised learning

- Today's focus: supervised learning

Given input pairs

\[D = \{(x_1, y_1), \ldots, (x_n, y_n)\} \]

where \(x_i \) comes from some input space \(X \) and \(y_i \) comes from some output space \(Y \), we try to learn a function \(f \) such that:

\[f(x') = y' \]

for some unseen pair \((x', y')\) (but from the same spaces!)
Classifying images

- Basic example: image classification

Training data: 1.2M images + their categories
(container ship, motor scooter, mushroom, ...)

Predict category for unseen image

2012 ImageNet classification challenge: only 16% top-5 error!

Source: ImageNet Large Scale Visual Recognition Competition 2012 (ILSVRC2012) -
http://www.image-net.org/challenges/LSVRC/2012/
Supervised learning methods

- Various algorithms that attempt to solve this problem:
 - Nearest neighbour
 - Decision tree learning
 - Support vector machines
 - Neural Networks
 - ...

- There are many approaches to supervised learning
- Neural networks are not always the answer
Neural networks

- Inspired by biological neurons
- Main structure:
 - Relatively simple neurons that compute a function given some inputs
 - Structured in ordered layers, where the neurons in each layer have as input a weighted sum of outputs of neurons in the previous layers.
Neural networks

- So, we want to learn $f(x) = y$. Usually x and y are represented as vectors.
- We feed x to the input layer.

For each neuron:

$$\text{activation} = g \left(\sum_{i=1}^{n} w_i a_i + b \right)$$
Neural networks

- Popular choices for activation function g:
 - Sigmoid:
 \[g(x) = \frac{1}{1 + e^{-x}} \]
 - ReLU (rectified linear unit):
 \[g(x) = \max(0, x) \]

Note that these are non-linear!
Neural networks

- Given a neural network as on the right, an input x and a function g we can now compute the value of the node(s) in the output layer!
- We want this value to correspond to the label y in the pair (x,y), as then the network is computing $f(x) = y$.

activation $= g \left(\sum_{i=1}^{n} w_i a_i + b \right)$
Neural networks

- However, how do we know which:
 - Layer structure
 - Activation function g
 - Values for weights for each layer
- we need to pick so that this network computes the function f that we want?
Neural networks

- Unfortunately, don't have learning algorithm to find layer structure for hidden layers and/or activation function g.
- Found by reasoning, experimentation and building on previous research.
- In this talk we assume the structure and activation function are given.

Image source: Stanford
Neural networks

- We do have an algorithm to learn the weights:
 - Backpropagation
- The backpropagation algorithm, together with large amounts of data, powerful GPUs and convolutional neural networks (see later) is what makes modern NNs so popular and effective.
Backpropagation in a nutshell

- We define a loss function:
 - Tells us "how far our prediction $f(x) = y'$ is off" from the label y
 - E.g. if we have a training example (x_i, y_i), one possible loss function is:

\[
L = \frac{1}{2} (y_i - f(x_i))^2
\]

- We want to minimise L
- Parameter space is way too big to set derivatives equal to 0!
Backpropagation in a nutshell

● So we do it iteratively.
● How do we know in which direction we have to change weights to minimize L?
 ○ Look at the derivatives!
● Every single step in the neural network and the loss function are **differentiable**, which is key to the backpropagation algorithm.
● For every weight w_{ij} (from neuron i to neuron j in the next layer), we'd like to know: $\frac{\partial L}{\partial w_{ij}}$ as then we know in which direction we should move w_{ij}.
Backpropagation in a nutshell

- I'll skip the exact maths here (great explanation on http://neuralnetworksanddeeplearning.com), but main idea:
- If you know all the intermediate activations (i.e. all outputs of the activation function g) for an input x_i, you can compute $\frac{\partial L}{\partial w_{ij}}$ for all weights using the chain rule for derivatives.
- We can express gradients in a layer in terms of gradients of the next layer.
- So if we start at the last layer, we can backpropagate to find gradients in previous layers.
Backpropagation in a nutshell

- Given these expressions, we can use an optimisation method, e.g. gradient descent, to adjust the weights in a way that will minimise the loss L.
- **Forward pass**: compute all activations for a given input x_i.
- **Backward pass**: compute gradients and change weights according to optimisation method.
Backpropagation in a nutshell

Main algorithm:

1. initialize all weights randomly
2. repeat until stopping criterion is met:
 a. for \((x_i, y_i)\) in dataset D:
 i. **Forward pass**: compute \(f(x_i)\), store intermediate activations, and compute \(L\)
 ii. **Backward pass**: compute gradients w.r.t. \(L\) and update weights according to optimisation method

Note that updating the weights changes \(f\)!
Backpropagation in a nutshell

- In practice, do forward pass for multiple training examples at once (batching):
 - More efficient
 - Less noisy gradients
- Which stopping criterion to use?
 - Loss doesn't drop anymore
 - Better: look at loss on held-out validation set
 - Otherwise you might overfit on the particular training set, and hence fail to generalise to new examples.
Using **convolutions**

- **Fully connected** layers don't scale well to images
- **Convolutional** layers:
 - Convolve learned weights with input
 - Weights **shared** along spatial dimensions
 - $k^2 \times c_i \times c_o$ weights for $k \times k$ kernel from c_i input channels to c_o output channels

Image source: Google CodeLabs
Training neural networks

In summary:

- Given a supervised learning problem and a dataset D:
 - Define the structure of a neural net, an activation function and a loss function.
 - Learn the weights using the algorithm described before
 - You now have a function $f: X \rightarrow Y$ which you can use to compute $f(x)$ on unseen x.
Part 2:
Tensorflow
Google **Tensorflow**

What is Tensorflow?

- "TensorFlow™ is an open source software library for numerical computation using data flow graphs."
- Probably the most popular open-source framework for training neural nets (but it's more general than that!)
- Large community, easy to use Python interface
- Used extensively in industry and research
- Development moves extremely fast!
Tensorflow **Overview**

- Tensorflow allows you to define, train, evaluate and perform inference on neural networks.
- Lots of extra functionality:
 - Tensorboard - visualising neural networks and training
 - Serving - serving models in production
 - Training on HPC clusters
 - Preprocessing data
 - Quantization of neural networks
 - ...
- APIs for C++, **Python**, Java and Go
Tensorflow Architecture

- Main implementations in C(++)
- Every operation can have a CPU and/or GPU implementation
- Most GPU code uses NVIDIA CUDA (proprietary)
 - CuDNN for common neural net operations
 - Efforts to get OpenCL support
- Relies heavily on Eigen and Protobuf
Concepts: Tensors

- Computations in Tensorflow are done on tensors
- Generalisation of matrices to higher dimensions
- E.g. a tensor of rank 4 of dimensions $(10,2,2,5)$ would have $10 \times 2 \times 2 \times 5 = 200$ elements
- Tensors have strong typing
- For input data, usually the first dimension is the batch size
 - E.g. feedforward pass for 4 images at once: $(4, ...)$
Concepts: **Computation Graph**

- **All computations** in Tensorflow are represented in the computation graph
 - Neural network, optimiser, ...
- The majority of code you'll write in Python **does not** actually execute the network on data; it constructs the computation graph
- Graph consists of **Operations** whose inputs and outputs are **Tensors**.
- Input data is represented by **placeholders**
Concepts: Operations and Kernels

- **Operations** run kernels
- **Operations**:
 - Metadata
 - Shape and type inference
 - Can work with partially defined shapes
 - Central registry
- **Kernels**:
 - Actual implementations on CPU or GPU
 - Can work for only certain types
 - Often Eigen for CPU kernels, NVIDIA CUDA/CuDNN for GPU kernels

Image source: tensorflow.org
Concepts: **Operations and Kernels**

- Usually NN operations need **gradient operations**
- Tensorflow deduces which kernel to use and handles memory management for you
 - E.g. CPU-only operation after GPU-only operation
 - Possible to force placement on a specific CPU or GPU
- You can implement your own operations.
 - Python: as a combination of existing operations
 - C++: load at runtime as shared library
Concepts: Session

- Represents the connection between the client (Python) and the C(++) runtime
- Provides access to the CPU and GPU device(s), which may be remote
- Allows to evaluate (parts of) the graph on data
Time to code!
Installation

These instructions can be found on: https://github.com/larsmennen/intro_to_tensorflow

Vanilla Python or virtualenv (CPU only):
pip3 install tensorflow

Vanilla Python or virtualenv (GPU, CUDA and CuDNN present):
pip3 install tensorflow-gpu

Anaconda (NVIDIA GPU)
conda install tensorflow-gpu

Anaconda (no NVIDIA GPU)
conda install tensorflow
Recognising Handwritten Digits

● We'll follow the Tensorflow tutorial on MNIST, but more in-depth
● Recognising handwritten digits
● Classification problem, 10 classes
● Data: pairs \((x, y)\) where \(x\) is a 28x28 pixel image (which we'll flatten to a 784-element vector) of a handwritten digit and \(y\) is a 10-element one-hot vector representing the label
● 55k training, 5k validation, 10k test
Network definition in Tensorflow

mnist.py and the inspecting_mnist notebook
Network definition in **Tensorflow**

Gives a total of:

$$784 \times 128 + 128 \times 32 + 32 \times 10 = 104,768$$

weights we need to train
Let's train our network!
Network training in Tensorflow

training_mnist notebook
Higher level **interfaces**

- Using Tensorflow as we did today can get cumbersome.
- There are higher level interfaces that make development easier and cleaner:
 - tf.slim
 - tf.estimator
 - Keras
- Keras provides a **clean, functional** API and only uses Tensorflow as a **backend** (can also use Microsoft CNTK or Theano)

 https://keras.io/
More resources

● Explanation of (convolutional) neural networks:
 http://neuralnetworksanddeeplearning.com
 http://cs231n.stanford.edu/

● Tensorflow:
 https://www.tensorflow.org/

● OpenCL support for Tensorflow:
 https://github.com/tensorflow/tensorflow/tensorflow/issues/22
We're hiring!
five.ai/careers

DevOps Engineer
Engineering Manager
Graduate Engineer
Internship
Machine Learning for Visual Scene Understanding
Machine Vision and Image Processing
Office Manager - Edinburgh
Research Engineer - Computer Vision and Deep Learning
Research Engineer - Robotics
Research Scientist
Research Scientist - Activity Understanding and Prediction
Research Scientist - Machine Learning for Driving Decisions
Research Scientist - Motion Prediction
Simulation Developer
Software Engineer - Machine Vision + Image Processing
Software Engineer - Platform
Questions?
Operation **implementation**

Let's have a look under the hood. How is an operation actually implemented?

Simple example: `tf.sigmoid`

$$g(x) = \frac{1}{1 + e^{-x}}$$

Image source: tensorflow.org
def sigmoid(x, name=None):
 """Computes sigmoid of `x` element-wise.

 Specifically, `y = 1 / (1 + exp(-x))`.

 Args:
 x: A Tensor with type `float32`, `float64`, `int32`, `complex64`, `int64`,
 or `qint32`.
 name: A name for the operation (optional).

 Returns:
 A Tensor with the same type as `x` if `x.dtype !=
 qint32` otherwise the return type is `quint8`.

 @compatibility(numpy)
 Equivalent to np.scipy.special.expit
 @end_compatibility
 """
 with ops.name_scope(name, "Sigmoid", [x]) as name:
 x = ops.convert_to_tensor(x, name="x")
 return gen_math_ops._sigmoid(x, name=name)
def _sigmoid(x, name=None):
 r"""Computes sigmoid of \'x\' element-wise.

 Specifically, \'y = 1 / (1 + exp(-x))\'.

 Args:
 x: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
 name: A name for the operation (optional).

 Returns:
 A `Tensor`. Has the same type as \'x\'.
 """
 result = _op_def_lib.apply_op("Sigmoid", x=x, name=name)
 return result

Just invokes the "Sigmoid" operation from the operation registry on x

Which will bring us to C++, so in Python only some conversions and checks!
Operation implementation

tensorflow/core/ops/math_ops.cc

This registers the Operation, but no kernels yet. So this is just "metadata". Note both Sigmoid and SigmoidGrad.
Operation **implementation**

tensorflow/core/kernels/cwise_op_sigmoid.cc

```cpp
REGISTERS(UnaryOp, CPU, "Sigmoid", functor::sigmoid, float, Eigen::half, double,
           complex64, complex128);
#if GOOGLE_CUDA
REGISTERS(UnaryOp, GPU, "Sigmoid", functor::sigmoid, float, Eigen::half,
           double);
#endif
```

This registers the **kernels**. Separate for CPU and GPU, may have different supported features.