

5G: implementation challenges and solutions

University of Bristol / Cambridge Wireless

18th September 2018

Matthew Baker Nokia Bell-Labs Head of Radio Physical Layer & Coexistence Standardisation

© Nokia 2018

NOKIA

New Channel Coding for New Radio

Low Density Parity Check (LDPC) codes for the data channels enable high data rates with low complexity Decoding

Key benefits of LDPC:

- High throughput with manageable complexity (parallel decoding in hardware)
- Good performance
- Adaptable to a wide range of code rates and block sizes
- Well suited to IR-HARQ

10 – 20 x Capacity with 5G @ sub 6 GHz 5x More Spectrum with 2 – 4x More Efficiency

4 © Nokia 2018

NOKIA

Massive MIMO at Higher Carrier Frequencies (>>6 GHz)

Poor path-loss conditions	Cost & power consumption	Antenna array implementation	Beam based air interface
Large number of antennas needed to overcome poor path-loss Obtaining channel knowledge per element is difficult	Full digital solutions require transceiver units behind all elements Wide bandwidths: A/D and D/A converters are very power hungry	Smaller form factors Distributed PA solutions → Hybrid arrays Beamforming at RF with baseband digital Precoding	 Single sector-wide beam may not provide adequate coverage → Beamform all channels! → Support analogue and hybrid arrays

Path Loss Difference 3.5 GHz vs 1.9 GHz

Nokia measurements

Outdoor

	LOS			NLOS				
	C_1	n1	Mean	Std	C_2	$\mathbf{n_2}$	Mean	Std
1.9 GHz	39.06	2	-0.48	3.57	27.69	4	0.03	3.81
3.5 GHz	42.93	2	-0.65	3.59	33.50	4	-0.13	3.89
$\Delta \mathrm{PL}$	3.87	5.81						

Indoor penetration loss

	Modern building	Old building	Shops
1.9 GHz	17.54 dB	7.16 dB	10.00±2.66 dB
3.5 GHz	22.54 dB	11.45 dB	12.97±2.73 dB
ΔL_P	5 dB	4.29 dB	2.97 dB

Outdoor path loss difference 5.8 dB Additional indoor loss difference 3 – 5 dB

Massive MIMO Configurations

8 columns is feasible at 3.5 GHz 8 columns enables 8 beams

- Coverage gains +6 dB
- Capacity gains +200%

Innovations at Base Station Site with New Antennas and RF

⁹ Less site space, lower power consumption, better radio performance

Antenna Array Architectures for scalable flexible MIMO

Digital (Baseband) beamforming	Hybrid beamforming	Analog beamforming
Adaptive TX/RX weights at Baseband	Adaptive TX/RX weights at both Analog and Baseband domains	Adaptive TX/RX weights at RF to form a beam
Each antenna element or antenna port has a transceiver unit High number (8->) of transceiver units	Each RF beam has a transceiver unit; Moderate number of transceiver units for capacity (e.g. up to 8)	One transceiver unit and one RF beam with high antenna gain (coverage)
"Frequency-Selective" beamforming	Combination of Analog and Baseband beamforming	"Frequency-Flat" beamforming
Best for capacity and flexibility (subject to high power consumption & cost characteristics when bandwidth increases)	Optimization between both coverage and capacity	Best for coverage (low power consumption & cost characteristics)

28 GHz Band also works for Mobile Use Cases

95% of indoor users get >100 Mbps
2/3 of users get 28 GHz and 1/3 get 3.5 GHz
3-5x higher data rate than 3.5 GHz alone
Inter-site distance 230 m in suburban area
3.5 GHz: 40 MHz bandwidth, 19 dBi

• 28 GHz: 250 MHz bandwidth, 25 dBi

11

Multiple bands: Potential 5G Bands in (early) 5G Deployments

-					Macro-cell
	600 MHz	LTE/5G	North America	Full coverage et al OHZ	
	700 MHz	LTE/5G	APAC, EMEA, LatAm	Full coverage at <1 GHZ	
	3.3-3.4	LTE/5G	APAC, Africa, LatAm		
	3.4-3.6	LTE/5G	Global		
	3.55-4.2	LTE/5G	US	Dense urban high data rates at $3.5 - 4.5$ GHz	
	3.6-3.8	5G	Europe		Small cell
	4.5	5G	Japan China		
Г	28	56	US Korea Japan	Hat anot high data rates at	
	39	5 G	US	28 – 39 GHz	
	24.25-27.5	5G	WRC-19 band		
	31.8-33.4	5G	WRC-19 band (Fra, UK)	Future mmW/ave options	small cel
	~40,~50,~70	5G	WRC-19 bands		

NOKIA

Lower Latency Radio Transmissions

5G physical layer design optimized for low latency Frame structure

- NR frame structure defined for pipeline processing implementation
 - Channel estimate available early in the slot
 - Decoding each OFDM symbol individually
 - → Decoding can start immediately after receiving the first data symbol
- NR uses LDPC channel codec for fast processing; LTE Turbo computationally much more complex (higher latency)
- NR supports short (down to 2 symbol) allocations minimizing queuing and transmission latency for ultra-low latency delivery

5G pipelining

LTE reference CTRL Common RS and DATA t

NOKIA

14

Network Architecture Evolution Towards 5G

BTS Core Image: Second seco

Target

5G radio more centralized for faster scalability
Core more distributed for low latency

Innovations in Networks Architecture – Local Content for Low Latency

- Local content and local networks needed for low latency
- Latency increases by 12 ms with round trip from Oulu to Helsinki

New opportunities: Industry 4.0 in Nokia Factory Oulu

Home / News / Releases /

Nokia and Telia conduct Industry 4.0 trial in Finland leveraging low-latency and high-bandwidth of 5G technology

Video! https://www.youtube.com/watch?v=E02Bqblce7E&

17

Increasing network configurability

- Increased number of Radio Resource Control (RRC) parameters to configure:
 - 60 in first version of LTE -> 600 in first version of 5G NR
- Optimisation of the radio network becomes a super-human challenge!
 - Self-optimising networks (SON) are critical for network operation
 - New artificial intelligence / neural network based techniques needed to manage the network configuration.

