

Review of current macro network site types and designs

Andy Sutton

Principal Network Architect

Architecture and Strategy, BT Technology

9th May 2019

Contents

- High-level macro-cell design consideration
- Macro-cell site evolution:
 - GSM
 - Space and polarisation diversity
 - UMTS
 - Introduction of network sharing
 - LTE
 - Adding even more frequency bands
- 5G macro-cell trials and site design
- 5G demos
- Summary

High-level macro cell site design considerations

* Includes fibre and DC power in addition to coaxial transmission line - dictated by location of Radio Units

GSM - a massive civil engineering programme

Single band GSM antenna system

• Space diversity receive systems and tower mounted low noise amplifiers improved the uplink (prior to polarisation diversity systems)

Prior to the Bias-T implementation, a separate DC power cable would be installed between a power distribution unit in the cabin and each amplifier
Single transmit antenna illustrated however dual duplex configuration was implemented by some vendors/operators to scale capacity
Antennas had fixed electrical tilt, mechanical tilt was a common RF optimisation technique, early sector antennas had wide beam-width

Space and polarisation diversity systems

Space and polarisation diversity systems

UMTS - different approaches - single band or dual band antennas...

Structures and antenna systems

вт

Dual band single polarisation (space diversity)

Dual band cross polarisation (polarisation diversity)

Dual band cross polarisation (polarisation diversity)

Single band cross polarisation

GSM 1800 and UMTS 2100 antenna system

- Dual band cross polarisation antennas
 - 1800MHz
 - 2100MHz
- Single port MHA for UMTS 2100
- Dual port MHA for GSM 1800
- 4 Coaxial feeder cables per cell sector
- Microwave radio for backhaul connection

Example site configurations for shared GSM/UMTS site

Adding 4G LTE...

Providing DC power and fibre (fronthaul) to external remote radio units

LTE adds more frequency bands

- Antenna systems must support the following frequency bands:
 - 800 MHZ
 - 1800 MHz
 - 2100 MHz
 - 2600 MHz
- Note the misalignment between antenna ports colour scheme and feeder tags, this is by design, our (MBNL) colour scheme came first...

Multi-band, multi-RAT, multi-operator antenna system

Note: There are many possible solutions to this radio configuration, including separate antennas.

15 British Telecommunications plc 2018

Introducing 5G @ 3500 MHz - radio trials with 8T8R and 64T64R systems

5G demo at Canary Wharf

• 4T4R LTE (15 MHz 2100 + 15 MHz 2600) with 64T64R NR

Summary

- Macro-cells have provided the vast majority of cellular coverage and capacity for many years a trend which will continue with 5G
- Small cells will have a significant role to play in the fulness of time
- Macro-cells are a cost optimised solution for delivering 5G to a large geographically dispersed subscriber base
- Site solutions need to be plug and play, simple installation requirements results in less errors - get it right in one visit!
- Solutions between 8T8R and 64T64R are required, 16T16R and 32T32R use cases
- Single passive antenna for all radios is required on some sites
- Hybrid active/passive antennas will be a solution for some sites
- More than two antennas per sector is a challenge 1 x active and 1 x passive at most
- This presentation has focused on one aspect of macro-cell design, there are many other considerations...
- 5G TDD radio interface requires frequency and phase sync, this must be resilient
- 5G will drive significant upgrades to transmission fronthaul, midhaul and/or backhaul
- BT/EE is actively upgrading its macro-cell footprint in accordance with our 5G rollout plans

Thank You Any questions?

