CWIC & CW TEC 2020 - Book now!

Tickets for both conferences are 3 for 2, email events@cambridgewireless.co.uk for more information

EnfuseNet: Rewriting the economics of vehicle autonomy

Press Release published by Cambridge Consultants, under Artificial Intelligence / Machine learning, Augmented, Virtual & Mixed Reality, Internet of Things (IoT), Sensors

Cambridge Consultants has developed EnfuseNet, a breakthrough Artificial Intelligence (AI) system for autonomous vehicles. A low-cost system that generates high-resolution depth data for vehicle perception technology.

Cambridge Consultants, part of the Capgemini Group, announces EnfuseNet, a breakthrough Artificial Intelligence (AI) system for autonomous vehicles. EnfuseNet fuses data from low-cost sensors and cameras – hardware costing just tens of dollars – to generate high-resolution depth data, the ideal reference point for autonomous systems. The result is revolutionary: very low-cost, high-resolution depth data that enables vehicle manufacturers and automotive suppliers to rewrite the economics of vehicle autonomy.

To experience EnfuseNet, visit EnfuseNet.com 

The viability of mass-market autonomous vehicles hangs in the balance. The global market is expected to decline by more than 3% during 2020 as a result of the COVID-19 outbreak1, and may take years to recover. High technology costs mean the automotive industry has struggled to introduce advanced driver-assistance systems (ADAS) beyond luxury vehicles and into the mass market. Meanwhile, the ‘arms race’ to rack up millions of driven miles to capture real-world training data favors a small group of early leaders, blocking new entrants. Against this background, Cambridge Consultants developed EnfuseNet, the first low-cost, high-resolution vehicle perception technology. EnfuseNet will help vehicle manufacturers and mobility technology providers to realize a critical element of a self-driving system at a much lower cost, and to deliver autonomy to new and larger segments of the automotive industry. 

Building an accurate and detailed depth point cloud – a 3D view around the vehicle – is critical for autonomous decision making. Today’s autonomous vehicles resolve depth data using two-dimensional camera inputs combined with LiDAR or radar. LiDAR remains the most accurate approach but with unit costs for mechanical spinning LiDAR devices in the thousands of dollars, the technology is prohibitively expensive beyond the luxury market. Radar is lower cost but does not provide enough depth points to build a high-resolution image. EnfuseNet takes data from a standard RGB camera and low-resolution depth sensors, which cost in the tens of dollars per device, and applies a neural network to predict depth at a vastly greater resolution than the original input. Uniquely, this depth information is per image pixel, enabling the system to provide depth data and a confidence prediction for every single object in an image.  

EnfuseNet was trained with synthetic data in a virtual learning environment, performing impressively when tested with real-world data. This enables OEMs and automotive suppliers to overcome the time, complexity and cost constraints of collecting real-world data to train their ADAS perception algorithms. Generating high-quality depth point clouds, with confidence down to the pixel level, means that EnfuseNet improves explainability and traceability, reducing the risk of ‘black box’ decision making in a safety-critical application. The underlying model is based on a completely novel architecture that fuses Convolutional Neural Networks (CNNs), Fully Convolutional Neural Networks (FCNs), pretrained elements, transfer and multi-objective learning and other approaches to optimize depth prediction performance. 

Thomas Carmody, Head of Transport and Infrastructure at Cambridge Consultants, said: “We began with the need to address the high cost of ADAS systems and technology. We’ve applied three decades of experience in sensor system design with cutting-edge AI in order to make this breakthrough. EnfuseNet achieves unprecedented performance at very low cost and is poised to help autonomous driving reach mainstream adoption.” 

EnfuseNet is the latest AI breakthrough from Cambridge Consultants. The company has cultivated a unique experimental culture, where data scientists and engineers can explore cutting-edge AI techniques and harness them to develop world-changing products and services. With a long track record of developing technologies for the automotive industries, including off-highway, Mobility as a Service (MaaS) and smart infrastructure, Cambridge Consultants helps automotive clients to seize the huge opportunity offered by vehicle autonomy. 

Visit EnfuseNet.com and experience how EnfuseNet takes low-resolution inputs to create a three-dimensional view of a vehicle’s surroundings with near magical clarity. 

Subscribe to the CW newsletter

This site uses cookies.

We use cookies to help us to improve our site and they enable us to deliver the best possible service and customer experience. By clicking accept or continuing to use this site you are agreeing to our cookies policy. Learn more

Start typing and press enter or the magnifying glass to search

Sign up to our newsletter
Stay in touch with CW

Choosing to join an existing organisation means that you'll need to be approved before your registration is complete. You'll be notified by email when your request has been accepted.

i
Your password must be at least 8 characters long and contain at least 1 uppercase character, 1 lowercase character and at least 1 number.

I would like to subscribe to

Select at least one option*